How to avoid AI bias issues with synthetic data generators
AI bias is a serious problem that can have a variety of consequences for individuals.
As artificial intelligence advances, questions and ethical dilemmas surrounding data science solutions begin to surface. Because humans have removed themselves from the decision-making process, they want to ensure that the judgments made by these algorithms are neither biased nor discriminatory. Artificial intelligence must be supervised at all times. We cannot say that this possible bias is caused by artificial intelligence, as it is a digital system based on predictive analytics that can process large amounts of data. The problem starts much earlier, with unsupervised data being "fed" into the system.
Throughout history, humans have always had prejudices and discrimination. Our actions don't appear to be changing anytime soon. Biases are found in systems and algorithms that, unlike humans, appear immune to the problem.
What is artificial intelligence bias?
AI bias occurs in data-related fields when the way data is obtained results in samples that do not correctly represent interest groups. This suggests that people from certain races, creeds, colors and genders are underrepresented in data samples. This may lead the system to make discriminating conclusions. It also raises questions about what data science consulting is and why it’s important.
Bias in AI does not mean that the AI system is created to intentionally favor a specific group of people. The goal of artificial intelligence is to enable individuals to express their desires through examples rather than instructions. So, if AI is biased, it can only be because the data is biased! Artificial intelligence decision-making is an idealized process that operates in the real world, and it cannot hide human flaws. Incorporating guided learning is also beneficial.
Why does it happen?
The problem of artificial intelligence bias arises because the data may contain human choices based on preconceptions, which are conducive to drawing good algorithmic conclusions. There are several real-life examples of AI bias. Racial people and famous drag queens were discriminated against by Google's hate speech detection system. For 10 years, Amazon's human resources algorithms have primarily fed data on male employees, resulting in female candidates being more likely to be rated as qualified for jobs at Amazon.
Facial recognition algorithms have a higher error rate when analyzing the faces of minorities, especially minority women, according to data scientists at the Massachusetts Institute of Technology (MIT). This may be because the algorithm was primarily fed white male faces during training.
Because Amazon’s algorithms are trained on data from its 112 million Prime users in the U.S., as well as tens of millions of additional individuals who frequent the site and frequently use its other merchandise, the company can predict Consumer purchasing behavior. Google's advertising business is based on predictive algorithms fed by data from the billions of internet searches it conducts every day and the 2.5 billion Android smartphones on the market. These Internet giants have established huge data monopolies and have nearly insurmountable advantages in the field of artificial intelligence.
How can synthetic data help address AI bias?
In an ideal society, no one would be biased and everyone would have equal opportunities, regardless of skin color, gender, religion or Sexual orientation. However, it exists in the real world, and those who are different from the majority in certain areas have a harder time finding jobs and obtaining education, making them underrepresented in many statistics. Depending on the goals of the AI system, this could lead to erroneous inferences that such people are less skilled, less likely to be included in these data sets, and less suitable to achieve good scores.
On the other hand, AI data could be a big step in the direction of unbiased AI. Here are some concepts to consider:
Look at real-world data and see where the bias is. The data is then synthesized using real-world data and observable biases. If you want to create an ideal virtual data generator, you need to include a definition of fairness that attempts to transform biased data into data that might be considered fair.
AI-generated data may fill in the gaps in a data set that don’t vary much or aren’t large enough to form an unbiased data set. Even with a large sample size, it is possible that some people were excluded or underrepresented compared to others. This problem must be solved using synthetic data.
Data mining can be more expensive than generating unbiased data. Actual data collection requires measurements, interviews, large samples, and in any case a lot of effort. Data generated by AI is cheap and requires only the use of data science and machine learning algorithms.
Over the past few years, executives at many for-profit synthetic data companies, as well as MitreCorp., the founder of Synthea, have noticed a surge in interest in their services. However, as algorithms are used more widely to make life-changing decisions, they are being found to exacerbate racism, sexism, and harmful biases in other high-impact areas, including facial recognition, crime prediction, and health care decision-making. Researchers say training algorithms on algorithmically generated data increases the likelihood that AI systems will perpetuate harmful biases in many situations.
The above is the detailed content of How to avoid AI bias issues with synthetic data generators. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics



This site reported on June 27 that Jianying is a video editing software developed by FaceMeng Technology, a subsidiary of ByteDance. It relies on the Douyin platform and basically produces short video content for users of the platform. It is compatible with iOS, Android, and Windows. , MacOS and other operating systems. Jianying officially announced the upgrade of its membership system and launched a new SVIP, which includes a variety of AI black technologies, such as intelligent translation, intelligent highlighting, intelligent packaging, digital human synthesis, etc. In terms of price, the monthly fee for clipping SVIP is 79 yuan, the annual fee is 599 yuan (note on this site: equivalent to 49.9 yuan per month), the continuous monthly subscription is 59 yuan per month, and the continuous annual subscription is 499 yuan per year (equivalent to 41.6 yuan per month) . In addition, the cut official also stated that in order to improve the user experience, those who have subscribed to the original VIP

Improve developer productivity, efficiency, and accuracy by incorporating retrieval-enhanced generation and semantic memory into AI coding assistants. Translated from EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG, author JanakiramMSV. While basic AI programming assistants are naturally helpful, they often fail to provide the most relevant and correct code suggestions because they rely on a general understanding of the software language and the most common patterns of writing software. The code generated by these coding assistants is suitable for solving the problems they are responsible for solving, but often does not conform to the coding standards, conventions and styles of the individual teams. This often results in suggestions that need to be modified or refined in order for the code to be accepted into the application

Large Language Models (LLMs) are trained on huge text databases, where they acquire large amounts of real-world knowledge. This knowledge is embedded into their parameters and can then be used when needed. The knowledge of these models is "reified" at the end of training. At the end of pre-training, the model actually stops learning. Align or fine-tune the model to learn how to leverage this knowledge and respond more naturally to user questions. But sometimes model knowledge is not enough, and although the model can access external content through RAG, it is considered beneficial to adapt the model to new domains through fine-tuning. This fine-tuning is performed using input from human annotators or other LLM creations, where the model encounters additional real-world knowledge and integrates it

To learn more about AIGC, please visit: 51CTOAI.x Community https://www.51cto.com/aigc/Translator|Jingyan Reviewer|Chonglou is different from the traditional question bank that can be seen everywhere on the Internet. These questions It requires thinking outside the box. Large Language Models (LLMs) are increasingly important in the fields of data science, generative artificial intelligence (GenAI), and artificial intelligence. These complex algorithms enhance human skills and drive efficiency and innovation in many industries, becoming the key for companies to remain competitive. LLM has a wide range of applications. It can be used in fields such as natural language processing, text generation, speech recognition and recommendation systems. By learning from large amounts of data, LLM is able to generate text

Machine learning is an important branch of artificial intelligence that gives computers the ability to learn from data and improve their capabilities without being explicitly programmed. Machine learning has a wide range of applications in various fields, from image recognition and natural language processing to recommendation systems and fraud detection, and it is changing the way we live. There are many different methods and theories in the field of machine learning, among which the five most influential methods are called the "Five Schools of Machine Learning". The five major schools are the symbolic school, the connectionist school, the evolutionary school, the Bayesian school and the analogy school. 1. Symbolism, also known as symbolism, emphasizes the use of symbols for logical reasoning and expression of knowledge. This school of thought believes that learning is a process of reverse deduction, through existing

Editor |ScienceAI Question Answering (QA) data set plays a vital role in promoting natural language processing (NLP) research. High-quality QA data sets can not only be used to fine-tune models, but also effectively evaluate the capabilities of large language models (LLM), especially the ability to understand and reason about scientific knowledge. Although there are currently many scientific QA data sets covering medicine, chemistry, biology and other fields, these data sets still have some shortcomings. First, the data form is relatively simple, most of which are multiple-choice questions. They are easy to evaluate, but limit the model's answer selection range and cannot fully test the model's ability to answer scientific questions. In contrast, open-ended Q&A

Editor | KX In the field of drug research and development, accurately and effectively predicting the binding affinity of proteins and ligands is crucial for drug screening and optimization. However, current studies do not take into account the important role of molecular surface information in protein-ligand interactions. Based on this, researchers from Xiamen University proposed a novel multi-modal feature extraction (MFE) framework, which for the first time combines information on protein surface, 3D structure and sequence, and uses a cross-attention mechanism to compare different modalities. feature alignment. Experimental results demonstrate that this method achieves state-of-the-art performance in predicting protein-ligand binding affinities. Furthermore, ablation studies demonstrate the effectiveness and necessity of protein surface information and multimodal feature alignment within this framework. Related research begins with "S

According to news from this site on August 1, SK Hynix released a blog post today (August 1), announcing that it will attend the Global Semiconductor Memory Summit FMS2024 to be held in Santa Clara, California, USA from August 6 to 8, showcasing many new technologies. generation product. Introduction to the Future Memory and Storage Summit (FutureMemoryandStorage), formerly the Flash Memory Summit (FlashMemorySummit) mainly for NAND suppliers, in the context of increasing attention to artificial intelligence technology, this year was renamed the Future Memory and Storage Summit (FutureMemoryandStorage) to invite DRAM and storage vendors and many more players. New product SK hynix launched last year
