Table of Contents
Optimizing Supply Chain Performance with Visibility
Improving Factory Efficiency for Industry 4.0
Drive industries with data and artificial intelligence
Home Technology peripherals AI Manufacturing data cloud enables industry to embrace data and artificial intelligence

Manufacturing data cloud enables industry to embrace data and artificial intelligence

Apr 29, 2023 am 09:55 AM
AI manufacturing data cloud

The manufacturing industry is leveraging new data and artificial intelligence technologies to improve efficiency. As artificial intelligence expands its reach into manufacturing, companies like Nvidia and Databricks have recently released several purpose-built products to help manufacturing companies collect and process large amounts of data from everything from physical operations to supply chains.

Snowflake is also getting in on the action, debuting its manufacturing data cloud. The new offering will enable companies in the automotive, technology, energy and industrial sectors to unlock the value of siled industrial data by leveraging Snowflake's data platform, partner solutions and industry-specific data sets, the company said.

Manufacturing data cloud enables industry to embrace data and artificial intelligence

Snowflake Data Cloud provides a platform for data warehouse (Data Warehouse), SQL analysis, machine learning, data engineering and third-party data monetization. The Manufacturing Data Cloud builds on these capabilities to provide industry solutions that help manufacturers lay the foundation for their business, improve supply chain performance, and drive smart manufacturing initiatives. Data Cloud is a fully manageable, secure platform with unified governance and multi-cloud data integration that the company claims can support storage, compute and users of virtually any size.

Tim Long, global head of manufacturing at Snowflake, said: “We are very excited about the Snowflak platform and the coming together of our partner solutions and data in the Manufacturing Data Cloud because we know it will have a big impact on manufacturers. Help."

Long leads the team that goes to market in this industry and worked with more than 50 partners on this launch. Meet hundreds of global manufacturers to understand the challenges they face while drawing on his 20 years of experience in semiconductor manufacturing. Long previously led the data and analytics practice at semiconductor manufacturer Micron, which adopted Snowflake and found it to be the best platform for unifying company data and improving factory performance. “We moved our entire manufacturing data footprint from on-site to Snowflake in the cloud in just four months,” he said. “Through this experience, I understand first-hand the opportunities and opportunities manufacturers face when it comes to data. Difficult.”

Optimizing Supply Chain Performance with Visibility

Supply chain effectiveness has a huge impact on a successful manufacturing operation, look beyond the four walls of the factory to see what is happening throughout the supply chain is key: “Our thesis is that the way to improve the performance of a business is through better visibility. The way to improve visibility is to have better data that goes beyond first-party data , beyond the immediate view of the enterprise.”

Snowflake’s Manufacturing Data Cloud enables data sharing and data sharing across an organization’s entire supply chain by combining its proprietary data with data from partners and the Snowflake Marketplace. Collaborate to improve downstream and upstream visibility. Companies can then leverage this data using SQL and Snowflake, a development framework for Python, Java and Scala. The platform allows different teams to work with shared data to build AI and ML models for use cases such as forecasting demand, raw material prices and energy prices.

The solution is built on Snowflake, leveraging Snowflake’s data collaboration to provide data connectivity and insights into supplier performance. One of the partners offered by Snowflake Marketplace is a solution from freight tracking specialist company FourKites. The company provides near real-time tracking insights for products shipped by land or sea, and manufacturers can access this FourKites data directly from the Snowflake Manufacturing Data Cloud. Long explained how they combine these insights with internal data to better schedule and ensure customer shipments arrive on time at a manageable cost, while mentioning that 3M is a current customer for this capability.

Other partners offering industrial applications include cloud-based supply chain risk management and business marketplace platform provider Avetta, as well as supply chain optimization software specialist Blue Yonder and cloud-native supply chain automation platform Elementum.

AWS is one of many technology partners included in this launch, with solutions that enable manufacturers to mobilize data sets located in disparate locations for comprehensive analysis. Another is Fivetran, a solution that automates various aspects of the ELT process when moving data from databases such as SAP systems and SaaS applications to the new manufacturing data cloud. Dataiku is also a batch performance optimizer partner that brings sensor, IoT and historical batch data into Dataiku to evaluate and predict batch results.

Improving Factory Efficiency for Industry 4.0

In addition to supply chain optimization, Snowflake’s manufacturing data cloud is also dedicated to improving factory operations.

“If we turn inside factories, we see manufacturers trying to increase efficiency using smart manufacturing or what is sometimes called Industry 4.0 technology.” Long said: “The next industrial revolution will actually be due to The possibilities of data and artificial intelligence.”

Artificial intelligence technology has greatly expanded data ingestion capabilities, and the Manufacturing Data Cloud provides native support for semi-structured, structured and unstructured data, including high-volume IoT data from shop floor sensors and equipment. Unifying this data in Snowflake helps manufacturers streamline operations across multiple plants with the ability to predict maintenance needs, analyze cycle times, and improve product yield and quality.

Until recently, technological advancements on the shop floor were less advanced than in other aspects of manufacturing. Operational technology (OT) involves the systems that run the shop floor and are at the heart of core manufacturing operations. Long said these systems are overseen by engineers on the operations floor and are typically outside the purview of IT. OT data is generated by sensors and legacy equipment that can sometimes be quite old.

Long noted: “Manufacturers often can’t use this data because it’s difficult to extract it and bring it to a place where they can mine it to understand product yields and factory efficiency.”

The relevant partner of Snowflake for this release is Riveron, an OT expert who has packaged a set of technologies that Long said are the best of their kind and can move data from data to data in a scalable and efficient way. A workshop or other fringe location as he calls it brought to Snowflak.

One of Riveron's products comes from Opto 22, an industrial automation company that makes a specialized physical hardware device capable of connecting to many types of machinery using any available network interface. The device runs software from another specialist company, Inductive Automation, which translates across hundreds of communication protocols, bringing them together in a standard message format and transmitting them into Snowflake with the help of Cirrus Link.

"(The solution) is completely edge-driven, meaning the assets on the shop floor can be defined there," Long said. "The definitions are things like 'What is the asset itself, what measurements are being collected, the units of measurement. What?' Such information will flow directly into Snowflake where it is dynamically materialized for analysis and defining these assets in the Snowflake cloud requires no additional configuration settings, supporting all the different data types in the Cirrus Link messaging standard, which is another key differentiator that sets Snowflake apart from its competitors.”

Drive industries with data and artificial intelligence

Several large global manufacturers are already using Snowflake to build data clouds, including computing interconnects. Even supplier Molex, which is using the platform to drive its digital transformation efforts.

Another customer is Scania, a manufacturer of trucks, buses and industrial engines, which uses Snowflake to continuously stream data and support machine learning initiatives for monitoring vehicle performance.

“With the shift to electric vehicles, they realize how important data is to the success of their next-generation product,” Long said of Scania. “They are using Snowflake to capture connected vehicles from 600,000 trucks on the road. data and use this data to provide high-value services to truck operators, such as optimized maintenance schedules, recommendations for adjustments to the way these vehicles operate, etc., in order to get the maximum value and performance from the vehicles."

Scania's “Snowflake’s Manufacturing Data Cloud gives us the data foundation we need to gain insights from the 150 million streaming messages we receive from 600,000 vehicles,” Peter Alåsen, head of product, said in a press release. ." "With Snowflake, we are able to reduce downtime by recommending maintenance based on vehicle operations and workshop availability, while increasing revenue-generating activities for servicing and other digital or physical services."

Long on the new release for global manufacturers Enthusiastic about the global prospects and opportunities it brings: "We have unlocked many opportunities with Snowflake in the manufacturing data cloud. We are excited to share these opportunities with the world."

The above is the detailed content of Manufacturing data cloud enables industry to embrace data and artificial intelligence. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
1 months ago By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Best Graphic Settings
1 months ago By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. How to Fix Audio if You Can't Hear Anyone
1 months ago By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Chat Commands and How to Use Them
1 months ago By 尊渡假赌尊渡假赌尊渡假赌

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

Bytedance Cutting launches SVIP super membership: 499 yuan for continuous annual subscription, providing a variety of AI functions Bytedance Cutting launches SVIP super membership: 499 yuan for continuous annual subscription, providing a variety of AI functions Jun 28, 2024 am 03:51 AM

This site reported on June 27 that Jianying is a video editing software developed by FaceMeng Technology, a subsidiary of ByteDance. It relies on the Douyin platform and basically produces short video content for users of the platform. It is compatible with iOS, Android, and Windows. , MacOS and other operating systems. Jianying officially announced the upgrade of its membership system and launched a new SVIP, which includes a variety of AI black technologies, such as intelligent translation, intelligent highlighting, intelligent packaging, digital human synthesis, etc. In terms of price, the monthly fee for clipping SVIP is 79 yuan, the annual fee is 599 yuan (note on this site: equivalent to 49.9 yuan per month), the continuous monthly subscription is 59 yuan per month, and the continuous annual subscription is 499 yuan per year (equivalent to 41.6 yuan per month) . In addition, the cut official also stated that in order to improve the user experience, those who have subscribed to the original VIP

Context-augmented AI coding assistant using Rag and Sem-Rag Context-augmented AI coding assistant using Rag and Sem-Rag Jun 10, 2024 am 11:08 AM

Improve developer productivity, efficiency, and accuracy by incorporating retrieval-enhanced generation and semantic memory into AI coding assistants. Translated from EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG, author JanakiramMSV. While basic AI programming assistants are naturally helpful, they often fail to provide the most relevant and correct code suggestions because they rely on a general understanding of the software language and the most common patterns of writing software. The code generated by these coding assistants is suitable for solving the problems they are responsible for solving, but often does not conform to the coding standards, conventions and styles of the individual teams. This often results in suggestions that need to be modified or refined in order for the code to be accepted into the application

Can fine-tuning really allow LLM to learn new things: introducing new knowledge may make the model produce more hallucinations Can fine-tuning really allow LLM to learn new things: introducing new knowledge may make the model produce more hallucinations Jun 11, 2024 pm 03:57 PM

Large Language Models (LLMs) are trained on huge text databases, where they acquire large amounts of real-world knowledge. This knowledge is embedded into their parameters and can then be used when needed. The knowledge of these models is "reified" at the end of training. At the end of pre-training, the model actually stops learning. Align or fine-tune the model to learn how to leverage this knowledge and respond more naturally to user questions. But sometimes model knowledge is not enough, and although the model can access external content through RAG, it is considered beneficial to adapt the model to new domains through fine-tuning. This fine-tuning is performed using input from human annotators or other LLM creations, where the model encounters additional real-world knowledge and integrates it

Seven Cool GenAI & LLM Technical Interview Questions Seven Cool GenAI & LLM Technical Interview Questions Jun 07, 2024 am 10:06 AM

To learn more about AIGC, please visit: 51CTOAI.x Community https://www.51cto.com/aigc/Translator|Jingyan Reviewer|Chonglou is different from the traditional question bank that can be seen everywhere on the Internet. These questions It requires thinking outside the box. Large Language Models (LLMs) are increasingly important in the fields of data science, generative artificial intelligence (GenAI), and artificial intelligence. These complex algorithms enhance human skills and drive efficiency and innovation in many industries, becoming the key for companies to remain competitive. LLM has a wide range of applications. It can be used in fields such as natural language processing, text generation, speech recognition and recommendation systems. By learning from large amounts of data, LLM is able to generate text

Five schools of machine learning you don't know about Five schools of machine learning you don't know about Jun 05, 2024 pm 08:51 PM

Machine learning is an important branch of artificial intelligence that gives computers the ability to learn from data and improve their capabilities without being explicitly programmed. Machine learning has a wide range of applications in various fields, from image recognition and natural language processing to recommendation systems and fraud detection, and it is changing the way we live. There are many different methods and theories in the field of machine learning, among which the five most influential methods are called the "Five Schools of Machine Learning". The five major schools are the symbolic school, the connectionist school, the evolutionary school, the Bayesian school and the analogy school. 1. Symbolism, also known as symbolism, emphasizes the use of symbols for logical reasoning and expression of knowledge. This school of thought believes that learning is a process of reverse deduction, through existing

To provide a new scientific and complex question answering benchmark and evaluation system for large models, UNSW, Argonne, University of Chicago and other institutions jointly launched the SciQAG framework To provide a new scientific and complex question answering benchmark and evaluation system for large models, UNSW, Argonne, University of Chicago and other institutions jointly launched the SciQAG framework Jul 25, 2024 am 06:42 AM

Editor |ScienceAI Question Answering (QA) data set plays a vital role in promoting natural language processing (NLP) research. High-quality QA data sets can not only be used to fine-tune models, but also effectively evaluate the capabilities of large language models (LLM), especially the ability to understand and reason about scientific knowledge. Although there are currently many scientific QA data sets covering medicine, chemistry, biology and other fields, these data sets still have some shortcomings. First, the data form is relatively simple, most of which are multiple-choice questions. They are easy to evaluate, but limit the model's answer selection range and cannot fully test the model's ability to answer scientific questions. In contrast, open-ended Q&A

SOTA performance, Xiamen multi-modal protein-ligand affinity prediction AI method, combines molecular surface information for the first time SOTA performance, Xiamen multi-modal protein-ligand affinity prediction AI method, combines molecular surface information for the first time Jul 17, 2024 pm 06:37 PM

Editor | KX In the field of drug research and development, accurately and effectively predicting the binding affinity of proteins and ligands is crucial for drug screening and optimization. However, current studies do not take into account the important role of molecular surface information in protein-ligand interactions. Based on this, researchers from Xiamen University proposed a novel multi-modal feature extraction (MFE) framework, which for the first time combines information on protein surface, 3D structure and sequence, and uses a cross-attention mechanism to compare different modalities. feature alignment. Experimental results demonstrate that this method achieves state-of-the-art performance in predicting protein-ligand binding affinities. Furthermore, ablation studies demonstrate the effectiveness and necessity of protein surface information and multimodal feature alignment within this framework. Related research begins with "S

SK Hynix will display new AI-related products on August 6: 12-layer HBM3E, 321-high NAND, etc. SK Hynix will display new AI-related products on August 6: 12-layer HBM3E, 321-high NAND, etc. Aug 01, 2024 pm 09:40 PM

According to news from this site on August 1, SK Hynix released a blog post today (August 1), announcing that it will attend the Global Semiconductor Memory Summit FMS2024 to be held in Santa Clara, California, USA from August 6 to 8, showcasing many new technologies. generation product. Introduction to the Future Memory and Storage Summit (FutureMemoryandStorage), formerly the Flash Memory Summit (FlashMemorySummit) mainly for NAND suppliers, in the context of increasing attention to artificial intelligence technology, this year was renamed the Future Memory and Storage Summit (FutureMemoryandStorage) to invite DRAM and storage vendors and many more players. New product SK hynix launched last year

See all articles