How to use variable type annotation in Python
一、概述
1、描述
变量类型注解是用来对变量和函数的参数返回值类型做注解,让调用方减少类型方面的错误,也可以提高代码的可读性和易用性。
但是,变量类型注解语法传入的类型表述能力有限,不能说明复杂的类型组成情况,因此引用了typing模块,来实现复杂的类型表达。
2、常用的数据类型
Type | Description |
---|---|
int | 整型 integer |
float | 浮点数字 |
bool | 布尔(int 的子类) |
str | 字符 (unicode) |
bytes | 8 位字符 |
object | 任意对象(公共基类) |
List[str] | 字符组成的列表 |
Tuple[int, int] | 两个int对象的元组 |
Tuple[int, ...] | 任意数量的 int 对象的元组 |
Dict[str, int] | 键是 str 值是 int 的字典 |
Iterable[int] | 包含 int 的可迭代对象 |
Sequence[bool] | 布尔值序列(只读) |
Mapping[str, int] | 从 str 键到 int 值的映射(只读) |
Any | 具有任意类型的动态类型值 |
Union | 联合类型 |
Optional | 参数可以为空或已经声明的类型 |
Mapping | 映射,是 collections.abc.Mapping 的泛型 |
MutableMapping | Mapping 对象的子类,可变 |
Generator | 生成器类型, Generator[YieldType、SendType、ReturnType] |
NoReturn | 函数没有返回结果 |
Set | 集合 set 的泛型, 推荐用于注解返回类型 |
AbstractSet | collections.abc.Set 的泛型,推荐用于注解参数 |
Sequence | collections.abc.Sequence 的泛型,list、tuple 等的泛化类型 |
TypeVar | 自定义兼容特定类型的变量 |
Generic | 自定义泛型类型 |
NewType | 声明一些具有特殊含义的类型 |
Callable | 可调用类型, Callable[[参数类型], 返回类型] |
NoReturn | 没法返回值 |
3、mypy模块
mypy是Python的可选静态类型检查器
安装mypy模块 pip3 install mypy
使用mypy进行静态类型检查 mypy 执行 python 文件
二、使用
1、基本使用
from typing import List, Set, Dict, Tuple #对于简单的 Python 内置类型,只需使用类型的名称 x1: int = 1 x2: float = 1.0 x3: bool = True x4: str = "test" x5: bytes = b"test" # 对于 collections ,类型名称用大写字母表示,并且 # collections 内类型的名称在方括号中 x6: List[int] = [1] x7: Set[int] = {6, 7} #对于映射,需要键和值的类型 x8: Dict[str, float] = {'field': 2.0} #对于固定大小的元祖,指定所有元素的类型 x9: Tuple[int, str, float] = (3, "yes", 7.5) #对于可变大小的元祖,使用一种类型和省略号 x10: Tuple[int, ...] = (1, 2, 3) '''在终端执行检查 (venv) D:\python>mypy .\01.py Success: no issues found in 1 source file '''
2、函数参数返回值添加类型标注
1. 指定多个参数的方式
''' 定义一个函数 参数 num int类型 返回值 字符串类型 使用mypy检测 ''' def num_fun(num: int) -> str: return str(num) num_fun(100) print(num_fun(100)) # 指定多个参数的方式 def plus(num1: int, num2: int) -> int: return num1 + num2 # 在类型注释后为参数添加默认值,默认值需要添加在末尾 ''' 声明函数参数时,所有带有默认值的参数必须放在非默认参数的后面。 这是因为 Python 解释器需要确定参数传递的顺序, 如果默认参数放在非默认参数前面,解释器就无法确定哪个参数是哪个 ''' def func1(num1: int, my_float: float = 3.5)-> float: return num1 + my_float print(func1(10,20)) f = func1 print(f(10))
2. Callable
Callable 是一个抽象类,用于描述可调用对象的基本行为,例如函数、方法和类。当你声明一个函数变量并将其分配给一个变量时,这个变量只是一个普通的 Python 对象,并不是一个可调用对象,因此它没有默认值
带有默认值的参数可以放在任何位置,但是在声明函数参数时,所有带有默认值的参数必须放在非默认参数的后面。这是因为 Python 解释器需要确定参数传递的顺序,如果默认参数放在非默认参数前面,解释器就无法确定哪个参数是哪个。
from typing import Callable #定义变量 指向一个函数 def func2(num1:int, my_float=3.5) -> str: return f'返回结果{num1 + my_float}' print(func2(10)) #Callable指向可调用(函数)值的方式 x: Callable[[int, float], str] = func2 print(x(10, 3.5)) ''' 执行结果 返回结果13.5 返回结果13.5 '''
3. Iterator
#定义函数,产生整数的生成器,每次返回一个 from typing import Iterator # 产生整数的生成器函数安全地返回只是一个 整数迭代器的函数 #,因此这就是我们对其进行注释的方式 def g(n: int) -> Iterator[int]: i = 0 while i < n: yield i #下次迭代时,代码从 yield 的下一条语句(不是下一行)开始执行 i += 1 print(g(10)) for i in g(10): print(i) '''执行结果 <generator object g at 0x00000000014E88E0> 0 1 2 3 4 5 6 7 8 9 '''
3、混合类型检查改进
1.联合运算符
联合运算符使用 " | " 线来替代了旧版本中Union[] 方法,使得程序更简洁
#新版本 def get_name(user: str | dict) -> str: if isinstance(user, str): return user elif isinstance(user, dict): return user.get('name', '') print(get_name({'name':'Bob'})) print(get_name("Alice"))
在这个例子中,函数get_name接受一个参数user,它可以是一个字符串或一个字典。如果user是一个字符串,函数会直接返回这个字符串;如果user是一个字典,函数会尝试从字典中获取name字段的值,并返回它。
在这个例子中,我们使用联合运算符将str和dict类型组合起来,表示user可以是这两种类型之一。
#旧版本,Union方法来实现相同的功能 from typing import Union def get_name2(user: Union[str, dict]) -> str: if isinstance(user, str): return user elif isinstance(user, dict): return user.get('name', '') print(get_name2({'name':'Bob'})) print(get_name2("Alice")) '''执行结果 Bob Alice '''
4、类型别名更改
#旧版本 oldname = str def oldFunc(param:oldname) -> oldname: return param + param oldFunc('oldFunc:花非人陌') #新版本,从3.10后开始支持 from typing import TypeAlias newstr :TypeAlias = str #定义类型别名 newint :TypeAlias = int def func_test(num:newint, msg:newstr)->newstr: return str(num) + msg print(func_test(100,"类型名称更改"))
The above is the detailed content of How to use variable type annotation in Python. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

The speed of mobile XML to PDF depends on the following factors: the complexity of XML structure. Mobile hardware configuration conversion method (library, algorithm) code quality optimization methods (select efficient libraries, optimize algorithms, cache data, and utilize multi-threading). Overall, there is no absolute answer and it needs to be optimized according to the specific situation.

An application that converts XML directly to PDF cannot be found because they are two fundamentally different formats. XML is used to store data, while PDF is used to display documents. To complete the transformation, you can use programming languages and libraries such as Python and ReportLab to parse XML data and generate PDF documents.

It is impossible to complete XML to PDF conversion directly on your phone with a single application. It is necessary to use cloud services, which can be achieved through two steps: 1. Convert XML to PDF in the cloud, 2. Access or download the converted PDF file on the mobile phone.

There is no built-in sum function in C language, so it needs to be written by yourself. Sum can be achieved by traversing the array and accumulating elements: Loop version: Sum is calculated using for loop and array length. Pointer version: Use pointers to point to array elements, and efficient summing is achieved through self-increment pointers. Dynamically allocate array version: Dynamically allocate arrays and manage memory yourself, ensuring that allocated memory is freed to prevent memory leaks.

To generate images through XML, you need to use graph libraries (such as Pillow and JFreeChart) as bridges to generate images based on metadata (size, color) in XML. The key to controlling the size of the image is to adjust the values of the <width> and <height> tags in XML. However, in practical applications, the complexity of XML structure, the fineness of graph drawing, the speed of image generation and memory consumption, and the selection of image formats all have an impact on the generated image size. Therefore, it is necessary to have a deep understanding of XML structure, proficient in the graphics library, and consider factors such as optimization algorithms and image format selection.

XML can be converted to images by using an XSLT converter or image library. XSLT Converter: Use an XSLT processor and stylesheet to convert XML to images. Image Library: Use libraries such as PIL or ImageMagick to create images from XML data, such as drawing shapes and text.

Use most text editors to open XML files; if you need a more intuitive tree display, you can use an XML editor, such as Oxygen XML Editor or XMLSpy; if you process XML data in a program, you need to use a programming language (such as Python) and XML libraries (such as xml.etree.ElementTree) to parse.

XML formatting tools can type code according to rules to improve readability and understanding. When selecting a tool, pay attention to customization capabilities, handling of special circumstances, performance and ease of use. Commonly used tool types include online tools, IDE plug-ins, and command-line tools.
