Table of Contents
1. Sound Quality
2. Latency
3. Scale
Home Technology peripherals AI Three major challenges of artificial intelligence voice technology

Three major challenges of artificial intelligence voice technology

May 03, 2023 am 10:34 AM
AI program voice

Artificial intelligence practitioners often encounter three common obstacles when it comes to speech-to-speech technology.

The prospect of artificial intelligence (AI) being able to generate human-like data has been talked about for decades. However, data scientists have tackled this problem with limited success. Precisely identifying effective strategies for creating such systems poses challenges ranging from technical to ethical and everything in between. However, generative AI has emerged as a bright spot to watch.

At its most basic, generative AI enables machines to generate content from speech to writing to art using elements such as audio files, text and images. Technology investment firm Sequoia Capita said: "Generative AI will not only become faster and cheaper, but in some cases will be better than artificial intelligence created by humans."

Especially based on generative Recent advances in machine learning technology for speech have made huge strides, but we still have a long way to go. In fact, voice compression appears in apps that people rely on heavily, like Zoom and Teams, which are still based on technology from the 1980s and 1990s. While speech has unlimited potential for speech technology, it is critical to assess the challenges and shortcomings that stand in the way of generative AI development.

Here are three common obstacles that AI practitioners face when it comes to speech-to-speech technology.

1. Sound Quality

Arguably the most important part of the best dialogue is that it is understandable. In the case of speech-to-speech technology, the goal is to sound like a human. For example, Siri and Alexa's robotic intonations are machine-like and not always clear. This is difficult to achieve with artificial intelligence for several reasons, but the nuances of human language play a big role.

Merabian's Law can help explain this. Human conversation can be divided into three parts: 55% facial expressions, 38% tone of voice, and only 7% text. Machine understanding relies on words or content to operate. Only recent advances in natural language processing (NLP) have made it possible to train AI models based on mood, emotion, timbre, and other important (but not necessarily spoken) aspects of language. It's even more challenging if you're only dealing with audio, not vision, because not more than half of the understanding comes from facial expressions.

2. Latency

Comprehensive AI analysis may take time, but in voice-to-voice communications, real-time is the only time that matters. Speech conversion must occur immediately when speaking. It also has to be accurate, which as you can imagine is no easy task for a machine.

The necessity of real-time varies by industry. For example, a content creator doing podcasts might be more concerned with sound quality than real-time voice conversion. But in an industry like customer service, time is of the essence. If call center agents use voice-assisted AI to respond to callers, they may make some sacrifices in quality. Still, time is of the essence in delivering a positive experience.

3. Scale

For speech-to-speech technology to reach its potential, it must support a variety of accents, languages, and dialects and be available to everyone—not just specific ones region or market. This requires mastering the specific application of the technology and doing a lot of tuning and training in order to scale effectively.

Emerging technology solutions are not one-size-fits-all; for a given solution, all users will need thousands of architectures to support this AI infrastructure. Users should also expect consistent testing of models. This is not new: all the classic challenges of machine learning also apply to the field of generative AI.

So how do people start to solve these problems so they start to realize the value of speech to speech technology? Fortunately, when you break it down step by step, it's less scary. First, you must master the problem. Earlier I gave the example of a call center and a content creator. Make sure you think about the use cases and desired outcomes and go from there.

Second, make sure your organization has the right architecture and algorithms. But before that happens, make sure your business has the right data. Data quality is important, especially when considering something as sensitive as human language and speech. Finally, if your application requires real-time speech conversion, make sure that feature is supported. Ultimately, no one wants to talk to a robot.

While ethical concerns about generating AI deepfakes, consent, and appropriate disclosure are now emerging, it is important to first understand and address the fundamental issues. Voice-to-speech technology has the potential to revolutionize the way we understand each other, creating opportunities for innovation that brings people together. But in order to achieve this goal, major challenges must first be faced. ?

The above is the detailed content of Three major challenges of artificial intelligence voice technology. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

Bytedance Cutting launches SVIP super membership: 499 yuan for continuous annual subscription, providing a variety of AI functions Bytedance Cutting launches SVIP super membership: 499 yuan for continuous annual subscription, providing a variety of AI functions Jun 28, 2024 am 03:51 AM

This site reported on June 27 that Jianying is a video editing software developed by FaceMeng Technology, a subsidiary of ByteDance. It relies on the Douyin platform and basically produces short video content for users of the platform. It is compatible with iOS, Android, and Windows. , MacOS and other operating systems. Jianying officially announced the upgrade of its membership system and launched a new SVIP, which includes a variety of AI black technologies, such as intelligent translation, intelligent highlighting, intelligent packaging, digital human synthesis, etc. In terms of price, the monthly fee for clipping SVIP is 79 yuan, the annual fee is 599 yuan (note on this site: equivalent to 49.9 yuan per month), the continuous monthly subscription is 59 yuan per month, and the continuous annual subscription is 499 yuan per year (equivalent to 41.6 yuan per month) . In addition, the cut official also stated that in order to improve the user experience, those who have subscribed to the original VIP

Context-augmented AI coding assistant using Rag and Sem-Rag Context-augmented AI coding assistant using Rag and Sem-Rag Jun 10, 2024 am 11:08 AM

Improve developer productivity, efficiency, and accuracy by incorporating retrieval-enhanced generation and semantic memory into AI coding assistants. Translated from EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG, author JanakiramMSV. While basic AI programming assistants are naturally helpful, they often fail to provide the most relevant and correct code suggestions because they rely on a general understanding of the software language and the most common patterns of writing software. The code generated by these coding assistants is suitable for solving the problems they are responsible for solving, but often does not conform to the coding standards, conventions and styles of the individual teams. This often results in suggestions that need to be modified or refined in order for the code to be accepted into the application

Can fine-tuning really allow LLM to learn new things: introducing new knowledge may make the model produce more hallucinations Can fine-tuning really allow LLM to learn new things: introducing new knowledge may make the model produce more hallucinations Jun 11, 2024 pm 03:57 PM

Large Language Models (LLMs) are trained on huge text databases, where they acquire large amounts of real-world knowledge. This knowledge is embedded into their parameters and can then be used when needed. The knowledge of these models is "reified" at the end of training. At the end of pre-training, the model actually stops learning. Align or fine-tune the model to learn how to leverage this knowledge and respond more naturally to user questions. But sometimes model knowledge is not enough, and although the model can access external content through RAG, it is considered beneficial to adapt the model to new domains through fine-tuning. This fine-tuning is performed using input from human annotators or other LLM creations, where the model encounters additional real-world knowledge and integrates it

Seven Cool GenAI & LLM Technical Interview Questions Seven Cool GenAI & LLM Technical Interview Questions Jun 07, 2024 am 10:06 AM

To learn more about AIGC, please visit: 51CTOAI.x Community https://www.51cto.com/aigc/Translator|Jingyan Reviewer|Chonglou is different from the traditional question bank that can be seen everywhere on the Internet. These questions It requires thinking outside the box. Large Language Models (LLMs) are increasingly important in the fields of data science, generative artificial intelligence (GenAI), and artificial intelligence. These complex algorithms enhance human skills and drive efficiency and innovation in many industries, becoming the key for companies to remain competitive. LLM has a wide range of applications. It can be used in fields such as natural language processing, text generation, speech recognition and recommendation systems. By learning from large amounts of data, LLM is able to generate text

Five schools of machine learning you don't know about Five schools of machine learning you don't know about Jun 05, 2024 pm 08:51 PM

Machine learning is an important branch of artificial intelligence that gives computers the ability to learn from data and improve their capabilities without being explicitly programmed. Machine learning has a wide range of applications in various fields, from image recognition and natural language processing to recommendation systems and fraud detection, and it is changing the way we live. There are many different methods and theories in the field of machine learning, among which the five most influential methods are called the "Five Schools of Machine Learning". The five major schools are the symbolic school, the connectionist school, the evolutionary school, the Bayesian school and the analogy school. 1. Symbolism, also known as symbolism, emphasizes the use of symbols for logical reasoning and expression of knowledge. This school of thought believes that learning is a process of reverse deduction, through existing

To provide a new scientific and complex question answering benchmark and evaluation system for large models, UNSW, Argonne, University of Chicago and other institutions jointly launched the SciQAG framework To provide a new scientific and complex question answering benchmark and evaluation system for large models, UNSW, Argonne, University of Chicago and other institutions jointly launched the SciQAG framework Jul 25, 2024 am 06:42 AM

Editor |ScienceAI Question Answering (QA) data set plays a vital role in promoting natural language processing (NLP) research. High-quality QA data sets can not only be used to fine-tune models, but also effectively evaluate the capabilities of large language models (LLM), especially the ability to understand and reason about scientific knowledge. Although there are currently many scientific QA data sets covering medicine, chemistry, biology and other fields, these data sets still have some shortcomings. First, the data form is relatively simple, most of which are multiple-choice questions. They are easy to evaluate, but limit the model's answer selection range and cannot fully test the model's ability to answer scientific questions. In contrast, open-ended Q&A

SOTA performance, Xiamen multi-modal protein-ligand affinity prediction AI method, combines molecular surface information for the first time SOTA performance, Xiamen multi-modal protein-ligand affinity prediction AI method, combines molecular surface information for the first time Jul 17, 2024 pm 06:37 PM

Editor | KX In the field of drug research and development, accurately and effectively predicting the binding affinity of proteins and ligands is crucial for drug screening and optimization. However, current studies do not take into account the important role of molecular surface information in protein-ligand interactions. Based on this, researchers from Xiamen University proposed a novel multi-modal feature extraction (MFE) framework, which for the first time combines information on protein surface, 3D structure and sequence, and uses a cross-attention mechanism to compare different modalities. feature alignment. Experimental results demonstrate that this method achieves state-of-the-art performance in predicting protein-ligand binding affinities. Furthermore, ablation studies demonstrate the effectiveness and necessity of protein surface information and multimodal feature alignment within this framework. Related research begins with "S

SK Hynix will display new AI-related products on August 6: 12-layer HBM3E, 321-high NAND, etc. SK Hynix will display new AI-related products on August 6: 12-layer HBM3E, 321-high NAND, etc. Aug 01, 2024 pm 09:40 PM

According to news from this site on August 1, SK Hynix released a blog post today (August 1), announcing that it will attend the Global Semiconductor Memory Summit FMS2024 to be held in Santa Clara, California, USA from August 6 to 8, showcasing many new technologies. generation product. Introduction to the Future Memory and Storage Summit (FutureMemoryandStorage), formerly the Flash Memory Summit (FlashMemorySummit) mainly for NAND suppliers, in the context of increasing attention to artificial intelligence technology, this year was renamed the Future Memory and Storage Summit (FutureMemoryandStorage) to invite DRAM and storage vendors and many more players. New product SK hynix launched last year

See all articles