Home > Backend Development > Python Tutorial > Perform example analysis using Python's parallelization

Perform example analysis using Python's parallelization

WBOY
Release: 2023-05-08 17:52:26
forward
1592 people have browsed it

Example: N-body problem

Physical premise:

  • Newton’s Law

  • Time Discrete equation of motion

Perform example analysis using Pythons parallelization

##Common calculation method

import numpy as np
import time
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
Ns = [2**i for i in range(1,10)]
runtimes = []
def remove_i(x,i):
    "从所有粒子中去除本粒子"
    shape = (x.shape[0]-1,)+x.shape[1:]
    y = np.empty(shape,dtype=float)
    y[:i] = x[:i]
    y[i:] = x[i+1:]
    return y 
def a(i,x,G,m):
    "计算加速度"
    x_i = x[i]
    x_j = remove_i(x,i)
    m_j = remove_i(m,i)
    diff = x_j - x_i
    mag3 = np.sum(diff**2,axis=1)**1.5
    result = G * np.sum(diff * (m_j / mag3)[:,np.newaxis],axis=0)
    return result
def timestep(x0,v0,G,m,dt):
    N = len(x0)
    x1 = np.empty(x0.shape,dtype=float)
    v1 = np.empty(v0.shape,dtype=float)
    for i in range(N):
        a_i0 = a(i,x0,G,m)
        v1[i] = a_i0 * dt + v0[i]
        x1[i] = a_i0 * dt**2 + v0[i] * dt + x0[i]
    return x1,v1
 def initial_cond(N,D):
    x0 = np.array([[1,1,1],[10,10,10]])
    v0 = np.array([[10,10,1],[0,0,0]])
    m = np.array([10,10])
    return x0,v0,m
def stimulate(N,D,S,G,dt):
    fig = plt.figure()
    ax = Axes3D(fig)
    x0,v0,m = initial_cond(N,D)
    for s in range(S):
        x1,v1 = timestep(x0,v0,G,m,dt)
        x0,v0 = x1,v1
        t = 0
        for i in x0:
            ax.scatter(i[0],i[1],i[2],label=str(s*dt),c=["black","green","red"][t])
            t += 1
        t = 0
    plt.show()
start = time.time()
stimulate(2,3,3000,9.8,1e-3)
stop = time.time()
runtimes.append(stop - start)
Copy after login

Rendering

Perform example analysis using Pythons parallelization

Python Parallel Execution

First of all, we give a code that can be used to write our own parallelization program, um, a string of code

import datetime
import multiprocessing as mp
 def accessional_fun():
    f = open("accession.txt","r")
    result = float(f.read())
    f.close()
    return result
 def final_fun(name, param):
    result = 0
    for num in param:
        result += num + accessional_fun() * 2
    return {name: result}
if __name__ == '__main__':
    start_time = datetime.datetime.now()
    num_cores = int(mp.cpu_count())
    print("你使用的计算机有: " + str(num_cores) + " 个核,当然了,Intel 7 以上的要除以2")
    print("如果你使用的 Python 是 32 位的,注意数据量不要超过两个G")
    print("请你再次检查你的程序是否已经改成了适合并行运算的样子")
    pool = mp.Pool(num_cores)
    param_dict = {'task1': list(range(10, 300)),
                  'task2': list(range(300, 600)),
                  'task3': list(range(600, 900)),
                  'task4': list(range(900, 1200)),
                  'task5': list(range(1200, 1500)),
                  'task6': list(range(1500, 1800)),
                  'task7': list(range(1800, 2100)),
                  'task8': list(range(2100, 2400)),
                  'task9': list(range(2400, 2700)),
                  'task10': list(range(2700, 3000))}
    results = [pool.apply_async(final_fun, args=(name, param)) for name, param in param_dict.items()]
    results = [p.get() for p in results]
    end_time = datetime.datetime.now()
    use_time = (end_time - start_time).total_seconds()
    print("多进程计算 共消耗: " + "{:.2f}".format(use_time) + " 秒")
    print(results)
Copy after login

The running results are as follows:

Perform example analysis using Pythons parallelization

The content in accession.txt is 2.5 This is an accumulation problem. Every time it is accumulated, 2.5

in the file will be read if necessary The problem of operation is similar to the problem of accumulation, that is, the problem of parallel operation. Then we can make the transformation of parallel operation

Another example

import math
import time
import multiprocessing as mp
def final_fun(name, param):
    result = 0
    for num in param:
        result += math.cos(num) + math.sin(num)
    return {name: result}
if __name__ == '__main__':
    start_time = time.time()
    num_cores = int(mp.cpu_count())
    print("你使用的计算机有: " + str(num_cores) + " 个核,当然了,Intel 7 以上的要除以2")
    print("如果你使用的 Python 是 32 位的,注意数据量不要超过两个G")
    print("请你再次检查你的程序是否已经改成了适合并行运算的样子")
    pool = mp.Pool(num_cores)
    param_dict = {'task1': list(range(10, 3000000)),
                  'task2': list(range(3000000, 6000000)),
                  'task3': list(range(6000000, 9000000)),
                  'task4': list(range(9000000, 12000000)),
                  'task5': list(range(12000000, 15000000)),
                  'task6': list(range(15000000, 18000000)),
                  'task7': list(range(18000000, 21000000)),
                  'task8': list(range(21000000, 24000000)),
                  'task9': list(range(24000000, 27000000)),
                  'task10': list(range(27000000, 30000000))}
    results = [pool.apply_async(final_fun, args=(name, param)) for name, param in param_dict.items()]
    results = [p.get() for p in results]
    end_time = time.time()
    use_time = end_time - start_time
    print("多进程计算 共消耗: " + "{:.2f}".format(use_time) + " 秒")
    result = 0
    for i in range(0,10):
        result += results[i].get("task"+str(i+1))
    print(result)
    start_time = time.time()
    result = 0
    for i in range(10,30000000):
        result += math.cos(i) + math.sin(i)
    end_time = time.time()
    print("单进程计算 共消耗: " + "{:.2f}".format(end_time - start_time) + " 秒")
    print(result)
Copy after login

The operation result:

Perform example analysis using Pythons parallelization

Mechanics problem improvement:

import numpy as np
import time
from mpi4py import MPI
from mpi4py.MPI import COMM_WORLD
from types import FunctionType
from matplotlib import pyplot as plt
from multiprocessing import Pool
def remove_i(x,i):
    shape = (x.shape[0]-1,) + x.shape[1:]
    y = np.empty(shape,dtype=float)
    y[:1] = x[:1]
    y[i:] = x[i+1:]
    return y
def a(i,x,G,m):
    x_i = x[i]
    x_j = remove_i(x,i)
    m_j = remove_i(m,i)
    diff = x_j - x_i
    mag3 = np.sum(diff**2,axis=1)**1.5
    result = G * np.sum(diff * (m_j/mag3)[:,np.newaxis],axis=0)
    return result
 
def timestep(x0,v0,G,m,dt,pool):
    N = len(x0)
    takes = [(i,x0,v0,G,m,dt) for i in range(N)]
    results = pool.map(timestep_i,takes)
    x1 = np.empty(x0.shape,dtype=float)
    v1 = np.empty(v0.shape,dtype=float)
    for i,x_i1,v_i1 in results:
        x1[i] = x_i1
        v1[i] = v_i1
    return x1,v1
def timestep_i(args):
    i,x0,v0,G,m,dt = args
    a_i0 = a(i,x0,G,m)
    v_i1 = a_i0 * dt + v0[i]
    x_i1 = a_i0 * dt ** 2 +v0[i]*dt + x0[i]
    return i,x_i1,v_i1

def initial_cond(N,D):
    x0 = np.random.rand(N,D)
    v0 = np.zeros((N,D),dtype=float)
    m = np.ones(N,dtype=float)
    return x0,v0,m
class Pool(object):
    def __init__(self):
        self.f = None
        self.P = COMM_WORLD.Get_size()
        self.rank = COMM_WORLD.Get_rank()
    def wait(self):
        if self.rank == 0:
            raise RuntimeError("Proc 0 cannot wait!")
        status = MPI.Status()
        while True:
            task = COMM_WORLD.recv(source=0,tag=MPI.ANY_TAG,status=status)
            if not task:
                break
            if isinstance(task,FunctionType):
                self.f = task
                continue
            result = self.f(task)
            COMM_WORLD.isend(result,dest=0,tag=status.tag)
    def map(self,f,tasks):
        N = len(tasks)
        P = self.P
        Pless1 = P - 1
        if self.rank != 0:
            self.wait()
            return
        if f is not self.f:
            self.f = f
            requests = []
            for p in range(1,self.P):
                r = COMM_WORLD.isend(f,dest=p)
                requests.append(r)
            MPI.Request.waitall(requests)
            results = []
            for i in range(N):
                result = COMM_WORLD.recv(source=(i%Pless1)+1,tag=i)
                results.append(result)
            return results
    def __del__(self):
        if self.rank == 0:
            for p in range(1,self.p):
                COMM_WORLD.isend(False,dest=p)
def simulate(N,D,S,G,dt):
    x0,v0,m = initial_cond(N,D)
    pool = Pool()
    if COMM_WORLD.Get_rank()==0:
        for s in range(S):
            x1,v1 = timestep(x0,v0,G,m,dt,pool)
            x0,v0 = x1,v1
        else:
            pool.wait()
if __name__ == '__main__':
    simulate(128,3,300,1.0,0.001)
Ps = [1,2,4,8]
runtimes = []
for P in Ps:
    start = time.time()
    simulate(128,3,300,1.0,0.001)
    stop = time.time()
    runtimes.append(stop - start)
print(runtimes)
Copy after login

The above is the detailed content of Perform example analysis using Python's parallelization. For more information, please follow other related articles on the PHP Chinese website!

Related labels:
source:yisu.com
Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
Popular Tutorials
More>
Latest Downloads
More>
Web Effects
Website Source Code
Website Materials
Front End Template