How to use Python for xpath, JsonPath, and bs4?
1.xpath
1.1 Use xpath
Google installs the xpath plug-in in advance, press ctrl shift x and a small black box will appear
-
Install lxml library
pip install lxml ‐i https://pypi.douban.com/simple
Import lxml.etree
from lxml import etree
etree.parse() parses local files
html_tree = etree.parse('XX.html')
etree.HTML() Server response file
html_tree = etree.HTML(response.read().decode('utf‐8')
.html_tree.xpath(xpath path)
- Find all descendant nodes , regardless of hierarchical relationship
- Find direct child nodes
//div[@id] //div[@id="maincontent"]
//@class
//div[contains(@id, "he")] //div[starts‐with(@id, "he")]
//div/h2/text()
//div[@id="head" and @class="s_down"] //title | //price
xpath .html
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8"/> <title>Title</title> </head> <body> <ul> <li id="l1" class="class1">北京</li> <li id="l2" class="class2">上海</li> <li id="d1">广州</li> <li>深圳</li> </ul> </body> </html>
from lxml import etree # xpath解析 # 本地文件: etree.parse # 服务器相应的数据 response.read().decode('utf-8') etree.HTML() tree = etree.parse('xpath.html') # 查找url下边的li li_list = tree.xpath('//body/ul/li') print(len(li_list)) # 4 # 获取标签中的内容 li_list = tree.xpath('//body/ul/li/text()') print(li_list) # ['北京', '上海', '广州', '深圳'] # 获取带id属性的li li_list = tree.xpath('//ul/li[@id]') print(len(li_list)) # 3 # 获取id为l1的标签内容 li_list = tree.xpath('//ul/li[@id="l1"]/text()') print(li_list) # ['北京'] # 获取id为l1的class属性值 c1 = tree.xpath('//ul/li[@id="l1"]/@class') print(c1) # ['class1'] # 获取id中包含l的标签 li_list = tree.xpath('//ul/li[contains(@id, "l")]/text()') print(li_list) # ['北京', '上海'] # 获取id以d开头的标签 li_list = tree.xpath('//ul/li[starts-with(@id,"d")]/text()') print(li_list) # ['广州'] # 获取id为l2并且class为class2的标签 li_list = tree.xpath('//ul/li[@id="l2" and @class="class2"]/text()') print(li_list) # ['上海'] # 获取id为l2或id为d1的标签 li_list = tree.xpath('//ul/li[@id="l2"]/text() | //ul/li[@id="d1"]/text()') print(li_list) # ['上海', '广州']
Crawling the value of Baidu search buttonimport urllib.request
from lxml import etree
url = 'http://www.baidu.com'
headers = {
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/103.0.0.0 Safari/537.36'
}
request = urllib.request.Request(url=url, headers=headers)
response = urllib.request.urlopen(request)
content = response.read().decode('utf-8')
tree = etree.HTML(content)
value = tree.xpath('//input[@id="su"]/@value')
print(value)
Copy after login
import urllib.request from lxml import etree url = 'http://www.baidu.com' headers = { 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/103.0.0.0 Safari/537.36' } request = urllib.request.Request(url=url, headers=headers) response = urllib.request.urlopen(request) content = response.read().decode('utf-8') tree = etree.HTML(content) value = tree.xpath('//input[@id="su"]/@value') print(value)
# 需求 下载的前十页的图片 # https://sc.chinaz.com/tupian/qinglvtupian.html 1 # https://sc.chinaz.com/tupian/qinglvtupian_page.html import urllib.request from lxml import etree def create_request(page): if (page == 1): url = 'https://sc.chinaz.com/tupian/qinglvtupian.html' else: url = 'https://sc.chinaz.com/tupian/qinglvtupian_' + str(page) + '.html' headers = { 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/92.0.4515.159 Safari/537.36', } request = urllib.request.Request(url=url, headers=headers) return request def get_content(request): response = urllib.request.urlopen(request) content = response.read().decode('utf-8') return content def down_load(content): # 下载图片 # urllib.request.urlretrieve('图片地址','文件的名字') tree = etree.HTML(content) name_list = tree.xpath('//div[@id="container"]//a/img/@alt') # 一般设计图片的网站都会进行懒加载 src_list = tree.xpath('//div[@id="container"]//a/img/@src2') print(src_list) for i in range(len(name_list)): name = name_list[i] src = src_list[i] url = 'https:' + src urllib.request.urlretrieve(url=url, filename='./loveImg/' + name + '.jpg') if __name__ == '__main__': start_page = int(input('请输入起始页码')) end_page = int(input('请输入结束页码')) for page in range(start_page, end_page + 1): # (1) 请求对象的定制 request = create_request(page) # (2)获取网页的源码 content = get_content(request) # (3)下载 down_load(content)
pip install jsonpath
Copy after login
2.2 Use of jsonpathpip install jsonpath
obj = json.load(open('json文件', 'r', encoding='utf‐8'))
ret = jsonpath.jsonpath(obj, 'jsonpath语法')
Copy after login
obj = json.load(open('json文件', 'r', encoding='utf‐8')) ret = jsonpath.jsonpath(obj, 'jsonpath语法')
Comparison of JSONPath syntax elements and corresponding XPath elements:
Example:
jsonpath.json
{ "store": { "book": [ { "category": "修真", "author": "六道", "title": "坏蛋是怎样练成的", "price": 8.95 }, { "category": "修真", "author": "天蚕土豆", "title": "斗破苍穹", "price": 12.99 }, { "category": "修真", "author": "唐家三少", "title": "斗罗大陆", "isbn": "0-553-21311-3", "price": 8.99 }, { "category": "修真", "author": "南派三叔", "title": "星辰变", "isbn": "0-395-19395-8", "price": 22.99 } ], "bicycle": { "author": "老马", "color": "黑色", "price": 19.95 } } }
import json import jsonpath obj = json.load(open('jsonpath.json', 'r', encoding='utf-8')) # 书店所有书的作者 author_list = jsonpath.jsonpath(obj, '$.store.book[*].author') print(author_list) # ['六道', '天蚕土豆', '唐家三少', '南派三叔'] # 所有的作者 author_list = jsonpath.jsonpath(obj, '$..author') print(author_list) # ['六道', '天蚕土豆', '唐家三少', '南派三叔', '老马'] # store下面的所有的元素 tag_list = jsonpath.jsonpath(obj, '$.store.*') print( tag_list) # [[{'category': '修真', 'author': '六道', 'title': '坏蛋是怎样练成的', 'price': 8.95}, {'category': '修真', 'author': '天蚕土豆', 'title': '斗破苍穹', 'price': 12.99}, {'category': '修真', 'author': '唐家三少', 'title': '斗罗大陆', 'isbn': '0-553-21311-3', 'price': 8.99}, {'category': '修真', 'author': '南派三叔', 'title': '星辰变', 'isbn': '0-395-19395-8', 'price': 22.99}], {'author': '老马', 'color': '黑色', 'price': 19.95}] # store里面所有东西的price price_list = jsonpath.jsonpath(obj, '$.store..price') print(price_list) # [8.95, 12.99, 8.99, 22.99, 19.95] # 第三个书 book = jsonpath.jsonpath(obj, '$..book[2]') print(book) # [{'category': '修真', 'author': '唐家三少', 'title': '斗罗大陆', 'isbn': '0-553-21311-3', 'price': 8.99}] # 最后一本书 book = jsonpath.jsonpath(obj, '$..book[(@.length-1)]') print(book) # [{'category': '修真', 'author': '南派三叔', 'title': '星辰变', 'isbn': '0-395-19395-8', 'price': 22.99}] # 前面的两本书 book_list = jsonpath.jsonpath(obj, '$..book[0,1]') # book_list = jsonpath.jsonpath(obj,'$..book[:2]') print( book_list) # [{'category': '修真', 'author': '六道', 'title': '坏蛋是怎样练成的', 'price': 8.95}, {'category': '修真', 'author': '天蚕土豆', 'title': '斗破苍穹', 'price': 12.99}] # 条件过滤需要在()的前面添加一个? # 过滤出所有的包含isbn的书。 book_list = jsonpath.jsonpath(obj, '$..book[?(@.isbn)]') print( book_list) # [{'category': '修真', 'author': '唐家三少', 'title': '斗罗大陆', 'isbn': '0-553-21311-3', 'price': 8.99}, {'category': '修真', 'author': '南派三叔', 'title': '星辰变', 'isbn': '0-395-19395-8', 'price': 22.99}] # 哪本书超过了10块钱 book_list = jsonpath.jsonpath(obj, '$..book[?(@.price>10)]') print( book_list) # [{'category': '修真', 'author': '天蚕土豆', 'title': '斗破苍穹', 'price': 12.99}, {'category': '修真', 'author': '南派三叔', 'title': '星辰变', 'isbn': '0-395-19395-8', 'price': 22.99}]
pip install bs42.Import
from bs4 import BeautifulSoup3. Create object
- The file generated by the server response object soup = BeautifulSoup(response.read().decode() , 'lxml')
- Local file generation object soup = BeautifulSoup(open('1.html'), 'lxml')
3.2 Installation and creationNote: The default encoding format for opening files is gbk, so you need to specify the opening encoding format utf-8
1.根据标签名查找节点
soup.a 【注】只能找到第一个a
soup.a.name
soup.a.attrs
2.函数
(1).find(返回一个对象)
find('a'):只找到第一个a标签
find('a', title='名字')
find('a', class_='名字')
(2).find_all(返回一个列表)
find_all('a') 查找到所有的a
find_all(['a', 'span']) 返回所有的a和span
find_all('a', limit=2) 只找前两个a
(3).select(根据选择器得到节点对象)【推荐】
1.element
eg:p
2..class
eg:.firstname
3.#id
eg:#firstname
4.属性选择器
[attribute]
eg:li = soup.select('li[class]')
[attribute=value]
eg:li = soup.select('li[class="hengheng1"]')
5.层级选择器
element element
div p
element>element
div>p
element,element
div,p
eg:soup = soup.select('a,span')
Copy after loginCopy after login
3.3 Node positioning 1.根据标签名查找节点 soup.a 【注】只能找到第一个a soup.a.name soup.a.attrs 2.函数 (1).find(返回一个对象) find('a'):只找到第一个a标签 find('a', title='名字') find('a', class_='名字') (2).find_all(返回一个列表) find_all('a') 查找到所有的a find_all(['a', 'span']) 返回所有的a和span find_all('a', limit=2) 只找前两个a (3).select(根据选择器得到节点对象)【推荐】 1.element eg:p 2..class eg:.firstname 3.#id eg:#firstname 4.属性选择器 [attribute] eg:li = soup.select('li[class]') [attribute=value] eg:li = soup.select('li[class="hengheng1"]') 5.层级选择器 element element div p element>element div>p element,element div,p eg:soup = soup.select('a,span')
1.根据标签名查找节点
soup.a 【注】只能找到第一个a
soup.a.name
soup.a.attrs
2.函数
(1).find(返回一个对象)
find('a'):只找到第一个a标签
find('a', title='名字')
find('a', class_='名字')
(2).find_all(返回一个列表)
find_all('a') 查找到所有的a
find_all(['a', 'span']) 返回所有的a和span
find_all('a', limit=2) 只找前两个a
(3).select(根据选择器得到节点对象)【推荐】
1.element
eg:p
2..class
eg:.firstname
3.#id
eg:#firstname
4.属性选择器
[attribute]
eg:li = soup.select('li[class]')
[attribute=value]
eg:li = soup.select('li[class="hengheng1"]')
5.层级选择器
element element
div p
element>element
div>p
element,element
div,p
eg:soup = soup.select('a,span')
Copy after loginCopy after login
3.5 Node information 1.根据标签名查找节点 soup.a 【注】只能找到第一个a soup.a.name soup.a.attrs 2.函数 (1).find(返回一个对象) find('a'):只找到第一个a标签 find('a', title='名字') find('a', class_='名字') (2).find_all(返回一个列表) find_all('a') 查找到所有的a find_all(['a', 'span']) 返回所有的a和span find_all('a', limit=2) 只找前两个a (3).select(根据选择器得到节点对象)【推荐】 1.element eg:p 2..class eg:.firstname 3.#id eg:#firstname 4.属性选择器 [attribute] eg:li = soup.select('li[class]') [attribute=value] eg:li = soup.select('li[class="hengheng1"]') 5.层级选择器 element element div p element>element div>p element,element div,p eg:soup = soup.select('a,span')
(1).获取节点内容:适用于标签中嵌套标签的结构
obj.string
obj.get_text()【推荐】
(2).节点的属性
tag.name 获取标签名
eg:tag = find('li)
print(tag.name)
tag.attrs将属性值作为一个字典返回
(3).获取节点属性
obj.attrs.get('title')【常用】
obj.get('title')
obj['title']
Copy after loginCopy after login(1).获取节点内容:适用于标签中嵌套标签的结构
obj.string
obj.get_text()【推荐】
(2).节点的属性
tag.name 获取标签名
eg:tag = find('li)
print(tag.name)
tag.attrs将属性值作为一个字典返回
(3).获取节点属性
obj.attrs.get('title')【常用】
obj.get('title')
obj['title']
Copy after loginCopy after login
3.6 Usage example(1).获取节点内容:适用于标签中嵌套标签的结构 obj.string obj.get_text()【推荐】 (2).节点的属性 tag.name 获取标签名 eg:tag = find('li) print(tag.name) tag.attrs将属性值作为一个字典返回 (3).获取节点属性 obj.attrs.get('title')【常用】 obj.get('title') obj['title']
(1).获取节点内容:适用于标签中嵌套标签的结构 obj.string obj.get_text()【推荐】 (2).节点的属性 tag.name 获取标签名 eg:tag = find('li) print(tag.name) tag.attrs将属性值作为一个字典返回 (3).获取节点属性 obj.attrs.get('title')【常用】 obj.get('title') obj['title']
bs4.html
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8"> <title>Title</title> </head> <body> <div> <ul> <li id="l1">张三</li> <li id="l2">李四</li> <li>王五</li> <a href="" id=" rel="external nofollow" rel="external nofollow" rel="external nofollow" rel="external nofollow" rel="external nofollow" rel="external nofollow" rel="external nofollow" rel="external nofollow" rel="external nofollow" " class="a1">google</a> <span>嘿嘿嘿</span> </ul> </div> <a href="" title=" rel="external nofollow" rel="external nofollow" rel="external nofollow" rel="external nofollow" rel="external nofollow" rel="external nofollow" a2">百度</a> <div id="d1"> <span> 哈哈哈 </span> </div> <p id="p1" class="p1">呵呵呵</p> </body> </html>
from bs4 import BeautifulSoup # 通过解析本地文件 来将bs4的基础语法进行讲解 # 默认打开的文件的编码格式是gbk 所以在打开文件的时候需要指定编码 soup = BeautifulSoup(open('bs4.html', encoding='utf-8'), 'lxml') # 根据标签名查找节点 # 找到的是第一个符合条件的数据 print(soup.a) # <a class="a1" href="" id=" rel="external nofollow" rel="external nofollow" rel="external nofollow" rel="external nofollow" rel="external nofollow" rel="external nofollow" rel="external nofollow" rel="external nofollow" rel="external nofollow" ">google</a> # 获取标签的属性和属性值 print(soup.a.attrs) # {'href': '', 'id': '', 'class': ['a1']} # bs4的一些函数 # (1)find # 返回的是第一个符合条件的数据 print(soup.find('a')) # <a class="a1" href="" id=" rel="external nofollow" rel="external nofollow" rel="external nofollow" rel="external nofollow" rel="external nofollow" rel="external nofollow" rel="external nofollow" rel="external nofollow" rel="external nofollow" ">google</a> # 根据title的值来找到对应的标签对象 print(soup.find('a', title="a2")) # <a href="" title=" rel="external nofollow" rel="external nofollow" rel="external nofollow" rel="external nofollow" rel="external nofollow" rel="external nofollow" a2">百度</a> # 根据class的值来找到对应的标签对象 注意的是class需要添加下划线 print(soup.find('a', class_="a1")) # <a class="a1" href="" id=" rel="external nofollow" rel="external nofollow" rel="external nofollow" rel="external nofollow" rel="external nofollow" rel="external nofollow" rel="external nofollow" rel="external nofollow" rel="external nofollow" ">google</a> # (2)find_all 返回的是一个列表 并且返回了所有的a标签 print(soup.find_all('a')) # [<a class="a1" href="" id=" rel="external nofollow" rel="external nofollow" rel="external nofollow" rel="external nofollow" rel="external nofollow" rel="external nofollow" rel="external nofollow" rel="external nofollow" rel="external nofollow" ">google</a>, <a href="" title=" rel="external nofollow" rel="external nofollow" rel="external nofollow" rel="external nofollow" rel="external nofollow" rel="external nofollow" a2">百度</a>] # 如果想获取的是多个标签的数据 那么需要在find_all的参数中添加的是列表的数据 print(soup.find_all(['a','span'])) # [<a class="a1" href="" id=" rel="external nofollow" rel="external nofollow" rel="external nofollow" rel="external nofollow" rel="external nofollow" rel="external nofollow" rel="external nofollow" rel="external nofollow" rel="external nofollow" ">google</a>, <span>嘿嘿嘿</span>, <a href="" title=" rel="external nofollow" rel="external nofollow" rel="external nofollow" rel="external nofollow" rel="external nofollow" rel="external nofollow" a2">百</a><spa哈</span>] # limit的作用是查找前几个数据 print(soup.find_all('li', limit=2)) # [<li id="l1">张三</li>, <li id="l2">李四</li>] # (3)select(推荐) # select方法返回的是一个列表 并且会返回多个数据 print(soup.select('a')) # [<a class="a1" href="" id=" rel="external nofollow" rel="external nofollow" rel="external nofollow" rel="external nofollow" rel="external nofollow" rel="external nofollow" rel="external nofollow" rel="external nofollow" rel="external nofollow" ">google</a>, <a href="" title=" rel="external nofollow" rel="external nofollow" rel="external nofollow" rel="external nofollow" rel="external nofollow" rel="external nofollow" a2">百度</a>] # 可以通过.代表class 我们把这种操作叫做类选择器 print(soup.select('.a1')) # [<a class="a1" href="" id=" rel="external nofollow" rel="external nofollow" rel="external nofollow" rel="external nofollow" rel="external nofollow" rel="external nofollow" rel="external nofollow" rel="external nofollow" rel="external nofollow" ">google</a>] print(soup.select('#l1')) # [<li id="l1">张三</li>] # 属性选择器---通过属性来寻找对应的标签 # 查找到li标签中有id的标签 print(soup.select('li[id]')) # [<li id="l1">张三</li>, <li id="l2">李四</li>] # 查找到li标签中id为l2的标签 print(soup.select('li[id="l2"]')) # [<li id="l2">李四</li>] # 层级选择器 # 后代选择器 # 找到的是div下面的li print(soup.select('div li')) # [<li id="l1">张三</li>, <li id="l2">李四</li>, <li>王五</li>] # 子代选择器 # 某标签的第一级子标签 # 注意:很多的计算机编程语言中 如果不加空格不会输出内容 但是在bs4中 不会报错 会显示内容 print(soup.select('div > ul > li')) # [<li id="l1">张三</li>, <li id="l2">李四</li>, <li>王五</li>] # 找到a标签和li标签的所有的对象 print(soup.select( 'a,li')) # [<li id="l1">张三</li>, <li id="l2">李四</li>, <li>王五</li>, <a class="a1" href="" id=" rel="external nofollow" rel="external nofollow" rel="external nofollow" rel="external nofollow" rel="external nofollow" rel="external nofollow" rel="external nofollow" rel="external nofollow" rel="external nofollow" ">google</a>, <a href="" title=" rel="external nofollow" rel="external nofollow" rel="external nofollow" rel="external nofollow" rel="external nofollow" rel="external nofollow" a2">百度</a>] # 节点信息 # 获取节点内容 obj = soup.select('#d1')[0] # 如果标签对象中 只有内容 那么string和get_text()都可以使用 # 如果标签对象中 除了内容还有标签 那么string就获取不到数据 而get_text()是可以获取数据 # 我们一般情况下 推荐使用get_text() print(obj.string) # None print(obj.get_text()) # 哈哈哈 # 节点的属性 obj = soup.select('#p1')[0] # name是标签的名字 print(obj.name) # p # 将属性值左右一个字典返回 print(obj.attrs) # {'id': 'p1', 'class': ['p1']} # 获取节点的属性 obj = soup.select('#p1')[0] # print(obj.attrs.get('class')) # ['p1'] print(obj.get('class')) # ['p1'] print(obj['class']) # ['p1']
import urllib.request
url = 'https://www.starbucks.com.cn/menu/'
response = urllib.request.urlopen(url)
content = response.read().decode('utf-8')
from bs4 import BeautifulSoup
soup = BeautifulSoup(content,'lxml')
# //ul[@class="grid padded-3 product"]//strong/text()
# 一般先用xpath方式通过google插件写好解析的表达式
name_list = soup.select('ul[class="grid padded-3 product"] strong')
for name in name_list:
print(name.get_text())
Copy after login
import urllib.request url = 'https://www.starbucks.com.cn/menu/' response = urllib.request.urlopen(url) content = response.read().decode('utf-8') from bs4 import BeautifulSoup soup = BeautifulSoup(content,'lxml') # //ul[@class="grid padded-3 product"]//strong/text() # 一般先用xpath方式通过google插件写好解析的表达式 name_list = soup.select('ul[class="grid padded-3 product"] strong') for name in name_list: print(name.get_text())
The above is the detailed content of How to use Python for xpath, JsonPath, and bs4?. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics



You can learn basic programming concepts and skills of Python within 2 hours. 1. Learn variables and data types, 2. Master control flow (conditional statements and loops), 3. Understand the definition and use of functions, 4. Quickly get started with Python programming through simple examples and code snippets.

Python is widely used in the fields of web development, data science, machine learning, automation and scripting. 1) In web development, Django and Flask frameworks simplify the development process. 2) In the fields of data science and machine learning, NumPy, Pandas, Scikit-learn and TensorFlow libraries provide strong support. 3) In terms of automation and scripting, Python is suitable for tasks such as automated testing and system management.

To read a queue from Redis, you need to get the queue name, read the elements using the LPOP command, and process the empty queue. The specific steps are as follows: Get the queue name: name it with the prefix of "queue:" such as "queue:my-queue". Use the LPOP command: Eject the element from the head of the queue and return its value, such as LPOP queue:my-queue. Processing empty queues: If the queue is empty, LPOP returns nil, and you can check whether the queue exists before reading the element.

Question: How to view the Redis server version? Use the command line tool redis-cli --version to view the version of the connected server. Use the INFO server command to view the server's internal version and need to parse and return information. In a cluster environment, check the version consistency of each node and can be automatically checked using scripts. Use scripts to automate viewing versions, such as connecting with Python scripts and printing version information.

The steps to start a Redis server include: Install Redis according to the operating system. Start the Redis service via redis-server (Linux/macOS) or redis-server.exe (Windows). Use the redis-cli ping (Linux/macOS) or redis-cli.exe ping (Windows) command to check the service status. Use a Redis client, such as redis-cli, Python, or Node.js, to access the server.

Redis memory size setting needs to consider the following factors: data volume and growth trend: Estimate the size and growth rate of stored data. Data type: Different types (such as lists, hashes) occupy different memory. Caching policy: Full cache, partial cache, and phasing policies affect memory usage. Business Peak: Leave enough memory to deal with traffic peaks.

Redis persistence will take up extra memory, RDB temporarily increases memory usage when generating snapshots, and AOF continues to take up memory when appending logs. Influencing factors include data volume, persistence policy and Redis configuration. To mitigate the impact, you can reasonably configure RDB snapshot policies, optimize AOF configuration, upgrade hardware and monitor memory usage. Furthermore, it is crucial to find a balance between performance and data security.

Python is suitable for data science, web development and automation tasks, while C is suitable for system programming, game development and embedded systems. Python is known for its simplicity and powerful ecosystem, while C is known for its high performance and underlying control capabilities.
