Table of Contents
Preface
0 Numpy Basics
1 Properties of ndarray
1.1 Output common properties of ndarray
2 Data type of ndarray
3 Modify the shape and data type of ndarray
3.1 View and modify the shape of ndarray
3.2 View and modify the shape of ndarray Data type
4 ndarray array creation
5 Common operations on ndarray arrays
6 Indexing, slicing, and iteration of ndarray arrays
7 ndarray数组的堆叠、拆分
Home Backend Development Python Tutorial Analysis of common operation examples of ndarray in Python Numpy

Analysis of common operation examples of ndarray in Python Numpy

May 10, 2023 pm 04:25 PM
python numpy ndarray

Preface

NumPy (Numerical Python) is an open source numerical computing extension for Python. This tool can be used to store and process large matrices. It is much more efficient than Python's own nested list structure (which can also be used to represent matrices) and supports a large number of dimensional array and matrix operations. , in addition, it also provides a large number of mathematical function libraries for array operations.
Numpy mainly uses ndarray to process N-dimensional arrays. Most of the properties and methods in Numpy serve ndarray, so it is very necessary to master the common operations of ndarray in Numpy!

0 Numpy Basics

The main object of NumPy is isomorphic multidimensional arrays. It is a list of elements (usually numbers), all of the same type, indexed by a tuple of non-negative integers. Called axis in NumPy dimensions.
In the example shown below, the array has 2 axes. The length of the first axis is 2 and the length of the second axis is 3.

[[ 1., 0., 0.],
 [ 0., 1., 2.]]
Copy after login

1 Properties of ndarray

1.1 Output common properties of ndarray

  • ndarray.ndim: Axis (dimension) of the array ) number. In the Python world, the number of dimensions is called rank.

  • ndarray.shape: Dimensions of the array. This is a tuple of integers representing the size of the array in each dimension. For a matrix with n rows and m columns, shape will be (n,m). Therefore, the length of the shape tuple is the rank or number of dimensions ndim.

  • ndarray.size: The total number of array elements. This is equal to the product of the elements of shape.

  • ndarray.dtype: An object describing the type of elements in the array. A dtype can be created or specified using standard Python types. Additionally NumPy provides its own types. For example numpy.int32, numpy.int16 and numpy.float64.

  • ndarray.itemsize : The byte size of each element in the array. For example, an array with elements of type float64 has an itemsize of 8 (=64/8), while an array of type complex32 has an itemsize of 4 (=32/8). It is equal to ndarray.dtype.itemsize.

>>> import numpy as np
>>> a = np.arange(15).reshape(3, 5)
>>> a
array([[ 0,  1,  2,  3,  4],
       [ 5,  6,  7,  8,  9],
       [10, 11, 12, 13, 14]])
>>> a.shape
(3, 5)
>>> a.ndim
2
>>> a.dtype.name
'int64'
>>> a.itemsize
8
>>> a.size
15
>>> type(a)
<type &#39;numpy.ndarray&#39;>
>>> b = np.array([6, 7, 8])
>>> b
array([6, 7, 8])
>>> type(b)
<type &#39;numpy.ndarray&#39;>
Copy after login

2 Data type of ndarray

In the same ndarray, the same type of data is stored. Common data types of ndarray include:

Analysis of common operation examples of ndarray in Python Numpy

3 Modify the shape and data type of ndarray

3.1 View and modify the shape of ndarray

## ndarray reshape操作
array_a = np.array([[1, 2, 3], [4, 5, 6]])
print(array_a, array_a.shape)
array_a_1 = array_a.reshape((3, 2))
print(array_a_1, array_a_1.shape)
# note: reshape不能改变ndarray中元素的个数,例如reshape之前为(2,3),reshape之后为(3,2)/(1,6)...
## ndarray转置
array_a_2 = array_a.T
print(array_a_2, array_a_2.shape)
## ndarray ravel操作:将ndarray展平
a.ravel()  # returns the array, flattened
array([ 1,  2,  3,  4,  5,  6 ])

输出:
[[1 2 3]
 [4 5 6]] (2, 3)
[[1 2]
 [3 4]
 [5 6]] (3, 2)
[[1 4]
 [2 5]
 [3 6]] (3, 2)
Copy after login

3.2 View and modify the shape of ndarray Data type

astype(dtype[, order, casting, subok, copy]): Modify the data type in ndarray. Pass in the data type that needs to be modified, and other keyword parameters can be ignored.

array_a = np.array([[1, 2, 3], [4, 5, 6]])
print(array_a, array_a.dtype)
array_a_1 = array_a.astype(np.int64)
print(array_a_1, array_a_1.dtype)
输出:
[[1 2 3]
 [4 5 6]] int32
[[1 2 3]
 [4 5 6]] int64
Copy after login

4 ndarray array creation

NumPy mainly creates ndarray arrays through the np.array() function.

>>> import numpy as np
>>> a = np.array([2,3,4])
>>> a
array([2, 3, 4])
>>> a.dtype
dtype(&#39;int64&#39;)
>>> b = np.array([1.2, 3.5, 5.1])
>>> b.dtype
dtype(&#39;float64&#39;)
Copy after login

You can also explicitly specify the type of the array when creating:

>>> c = np.array( [ [1,2], [3,4] ], dtype=complex )
>>> c
array([[ 1.+0.j,  2.+0.j],
       [ 3.+0.j,  4.+0.j]])
Copy after login

It can also be created by using the np.random.random function Random ndarray array.

>>> a = np.random.random((2,3))
>>> a
array([[ 0.18626021,  0.34556073,  0.39676747],
       [ 0.53881673,  0.41919451,  0.6852195 ]])
Copy after login

Typically, the elements of an array are initially unknown, but its size is known. Therefore, NumPy provides several functions to create arrays with initial placeholder contents. This reduces the need for array growth, which is a costly operation.
Functionzeros creates an array consisting of 0s, function ones creates a complete array, function empty creates an array whose initial content is random , depends on the state of the memory. By default, the dtype of the created array is float64.

>>> np.zeros( (3,4) )
array([[ 0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.]])
>>> np.ones( (2,3,4), dtype=np.int16 )                # dtype can also be specified
array([[[ 1, 1, 1, 1],
        [ 1, 1, 1, 1],
        [ 1, 1, 1, 1]],
       [[ 1, 1, 1, 1],
        [ 1, 1, 1, 1],
        [ 1, 1, 1, 1]]], dtype=int16)
>>> np.empty( (2,3) )                                 # uninitialized, output may vary
array([[  3.73603959e-262,   6.02658058e-154,   6.55490914e-260],
       [  5.30498948e-313,   3.14673309e-307,   1.00000000e+000]])
Copy after login

To create an array of numbers, NumPy provides a function similar to range, which returns an array instead of a list.

>>> np.arange( 10, 30, 5 )
array([10, 15, 20, 25])
>>> np.arange( 0, 2, 0.3 )                 # it accepts float arguments
array([ 0. ,  0.3,  0.6,  0.9,  1.2,  1.5,  1.8])
Copy after login

5 Common operations on ndarray arrays

Unlike many matrix languages, the product operators*operate element-wise in NumPy arrays. Matrix products can be performed using the @ operator (in python> = 3.5) or the dot function or method:

>>> A = np.array( [[1,1],
...             [0,1]] )
>>> B = np.array( [[2,0],
...             [3,4]] )
>>> A * B                       # elementwise product
array([[2, 0],
       [0, 4]])
>>> A @ B                       # matrix product
array([[5, 4],
       [3, 4]])
>>> A.dot(B)                    # another matrix product
array([[5, 4],
       [3, 4]])
Copy after login

Certain operations (e.g. = and *=) will more directly change the matrix array being operated on without creating a new matrix array.

>>> a = np.ones((2,3), dtype=int)
>>> b = np.random.random((2,3))
>>> a *= 3
>>> a
array([[3, 3, 3],
       [3, 3, 3]])
>>> b += a
>>> b
array([[ 3.417022  ,  3.72032449,  3.00011437],
       [ 3.30233257,  3.14675589,  3.09233859]])
>>> a += b                  # b is not automatically converted to integer type
Traceback (most recent call last):
  ...
TypeError: Cannot cast ufunc add output from dtype(&#39;float64&#39;) to dtype(&#39;int64&#39;) with casting rule &#39;same_kind&#39;
Copy after login

When operating with arrays of different types, the type of the resulting array corresponds to the more general or precise array (a behavior called upcasting).

>>> a = np.ones(3, dtype=np.int32)
>>> b = np.linspace(0,pi,3)
>>> b.dtype.name
&#39;float64&#39;
>>> c = a+b
>>> c
array([ 1.        ,  2.57079633,  4.14159265])
>>> c.dtype.name
&#39;float64&#39;
>>> d = np.exp(c*1j)
>>> d
array([ 0.54030231+0.84147098j, -0.84147098+0.54030231j,
       -0.54030231-0.84147098j])
>>> d.dtype.name
&#39;complex128&#39;
Copy after login

Many unary operations, such as calculating the sum of all elements in an array, are implemented as methods of the ndarray class.

>>> a = np.random.random((2,3))
>>> a
array([[ 0.18626021,  0.34556073,  0.39676747],
       [ 0.53881673,  0.41919451,  0.6852195 ]])
>>> a.sum()
2.5718191614547998
>>> a.min()
0.1862602113776709
>>> a.max()
0.6852195003967595
Copy after login

By default, these operations work on the array as if it were a list of numbers, regardless of its shape. However, by specifying the axis parameter, you can apply operations along the specified axis of the array:

>>> b = np.arange(12).reshape(3,4)
>>> b
array([[ 0,  1,  2,  3],
       [ 4,  5,  6,  7],
       [ 8,  9, 10, 11]])
>>>
>>> b.sum(axis=0)                            # 计算每一列的和
array([12, 15, 18, 21])
>>>
>>> b.min(axis=1)                            # 计算每一行的和
array([0, 4, 8])
>>>
>>> b.cumsum(axis=1)                         # cumulative sum along each row
array([[ 0,  1,  3,  6],
       [ 4,  9, 15, 22],
       [ 8, 17, 27, 38]])
解释:以第一行为例,0=0,1=1+0,3=2+1+0,6=3+2+1+0
Copy after login

6 Indexing, slicing, and iteration of ndarray arrays

One Dimension Arrays can be indexed, sliced, and iterated just like lists and other Python sequence types.

>>> a = np.arange(10)**3
>>> a
array([  0,   1,   8,  27,  64, 125, 216, 343, 512, 729])
>>> a[2]
8
>>> a[2:5]
array([ 8, 27, 64])
>>> a[:6:2] = -1000    # 等价于 a[0:6:2] = -1000; 从0到6的位置, 每隔一个设置为-1000
>>> a
array([-1000,     1, -1000,    27, -1000,   125,  fan 216,   343,   512,   729])
>>> a[ : :-1]                                 # 将a反转
array([  729,   512,   343,   216,   125, -1000,    27, -1000,     1, -1000])
Copy after login

Multidimensional arrays can have one index per axis. These indices are given as a comma-separated tuple:

>>> b
array([[ 0,  1,  2,  3],
       [10, 11, 12, 13],
       [20, 21, 22, 23],
       [30, 31, 32, 33],
       [40, 41, 42, 43]])
>>> b[2,3]
23
>>> b[0:5, 1]                       # each row in the second column of b
array([ 1, 11, 21, 31, 41])
>>> b[ : ,1]                        # equivalent to the previous example
array([ 1, 11, 21, 31, 41])
>>> b[1:3, : ]                      # each column in the second and third row of b
array([[10, 11, 12, 13],
       [20, 21, 22, 23]])
>>> b[-1]                                  # the last row. Equivalent to b[-1,:]
array([40, 41, 42, 43])
Copy after login

7 ndarray数组的堆叠、拆分

几个数组可以沿不同的轴堆叠在一起,例如:np.vstack()函数和np.hstack()函数

>>> a = np.floor(10*np.random.random((2,2)))
>>> a
array([[ 8.,  8.],
       [ 0.,  0.]])
>>> b = np.floor(10*np.random.random((2,2)))
>>> b
array([[ 1.,  8.],
       [ 0.,  4.]])
>>> np.vstack((a,b))
array([[ 8.,  8.],
       [ 0.,  0.],
       [ 1.,  8.],
       [ 0.,  4.]])
>>> np.hstack((a,b))
array([[ 8.,  8.,  1.,  8.],
       [ 0.,  0.,  0.,  4.]])
Copy after login

column_stack()函数将1D数组作为列堆叠到2D数组中。

>>> from numpy import newaxis
>>> a = np.array([4.,2.])
>>> b = np.array([3.,8.])
>>> np.column_stack((a,b))     # returns a 2D array
array([[ 4., 3.],
       [ 2., 8.]])
>>> np.hstack((a,b))           # the result is different
array([ 4., 2., 3., 8.])
>>> a[:,newaxis]               # this allows to have a 2D columns vector
array([[ 4.],
       [ 2.]])
>>> np.column_stack((a[:,newaxis],b[:,newaxis]))
array([[ 4.,  3.],
       [ 2.,  8.]])
>>> np.hstack((a[:,newaxis],b[:,newaxis]))   # the result is the same
array([[ 4.,  3.],
       [ 2.,  8.]])
Copy after login

使用hsplit(),可以沿数组的水平轴拆分数组,方法是指定要返回的形状相等的数组的数量,或者指定应该在其之后进行分割的列:
同理,使用vsplit(),可以沿数组的垂直轴拆分数组,方法同上。

################### np.hsplit ###################
>>> a = np.floor(10*np.random.random((2,12)))
>>> a
array([[ 9.,  5.,  6.,  3.,  6.,  8.,  0.,  7.,  9.,  7.,  2.,  7.],
       [ 1.,  4.,  9.,  2.,  2.,  1.,  0.,  6.,  2.,  2.,  4.,  0.]])
>>> np.hsplit(a,3)   # Split a into 3
[array([[ 9.,  5.,  6.,  3.],
       [ 1.,  4.,  9.,  2.]]), array([[ 6.,  8.,  0.,  7.],
       [ 2.,  1.,  0.,  6.]]), array([[ 9.,  7.,  2.,  7.],
       [ 2.,  2.,  4.,  0.]])]
>>> np.hsplit(a,(3,4))   # Split a after the third and the fourth column
[array([[ 9.,  5.,  6.],
       [ 1.,  4.,  9.]]), array([[ 3.],
       [ 2.]]), array([[ 6.,  8.,  0.,  7.,  9.,  7.,  2.,  7.],
       [ 2.,  1.,  0.,  6.,  2.,  2.,  4.,  0.]])]
>>> x = np.arange(8.0).reshape(2, 2, 2)
>>> x
array([[[0.,  1.],
        [2.,  3.]],
       [[4.,  5.],
        [6.,  7.]]])
################### np.vsplit ###################
>>> np.vsplit(x, 2)
[array([[[0., 1.],
        [2., 3.]]]), array([[[4., 5.],
        [6., 7.]]])]
Copy after login

The above is the detailed content of Analysis of common operation examples of ndarray in Python Numpy. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
2 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
Hello Kitty Island Adventure: How To Get Giant Seeds
1 months ago By 尊渡假赌尊渡假赌尊渡假赌
Two Point Museum: All Exhibits And Where To Find Them
1 months ago By 尊渡假赌尊渡假赌尊渡假赌

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

Is there any mobile app that can convert XML into PDF? Is there any mobile app that can convert XML into PDF? Apr 02, 2025 pm 08:54 PM

An application that converts XML directly to PDF cannot be found because they are two fundamentally different formats. XML is used to store data, while PDF is used to display documents. To complete the transformation, you can use programming languages ​​and libraries such as Python and ReportLab to parse XML data and generate PDF documents.

How to control the size of XML converted to images? How to control the size of XML converted to images? Apr 02, 2025 pm 07:24 PM

To generate images through XML, you need to use graph libraries (such as Pillow and JFreeChart) as bridges to generate images based on metadata (size, color) in XML. The key to controlling the size of the image is to adjust the values ​​of the &lt;width&gt; and &lt;height&gt; tags in XML. However, in practical applications, the complexity of XML structure, the fineness of graph drawing, the speed of image generation and memory consumption, and the selection of image formats all have an impact on the generated image size. Therefore, it is necessary to have a deep understanding of XML structure, proficient in the graphics library, and consider factors such as optimization algorithms and image format selection.

Is the conversion speed fast when converting XML to PDF on mobile phone? Is the conversion speed fast when converting XML to PDF on mobile phone? Apr 02, 2025 pm 10:09 PM

The speed of mobile XML to PDF depends on the following factors: the complexity of XML structure. Mobile hardware configuration conversion method (library, algorithm) code quality optimization methods (select efficient libraries, optimize algorithms, cache data, and utilize multi-threading). Overall, there is no absolute answer and it needs to be optimized according to the specific situation.

How to convert XML files to PDF on your phone? How to convert XML files to PDF on your phone? Apr 02, 2025 pm 10:12 PM

It is impossible to complete XML to PDF conversion directly on your phone with a single application. It is necessary to use cloud services, which can be achieved through two steps: 1. Convert XML to PDF in the cloud, 2. Access or download the converted PDF file on the mobile phone.

How to open xml format How to open xml format Apr 02, 2025 pm 09:00 PM

Use most text editors to open XML files; if you need a more intuitive tree display, you can use an XML editor, such as Oxygen XML Editor or XMLSpy; if you process XML data in a program, you need to use a programming language (such as Python) and XML libraries (such as xml.etree.ElementTree) to parse.

Recommended XML formatting tool Recommended XML formatting tool Apr 02, 2025 pm 09:03 PM

XML formatting tools can type code according to rules to improve readability and understanding. When selecting a tool, pay attention to customization capabilities, handling of special circumstances, performance and ease of use. Commonly used tool types include online tools, IDE plug-ins, and command-line tools.

Is there a mobile app that can convert XML into PDF? Is there a mobile app that can convert XML into PDF? Apr 02, 2025 pm 09:45 PM

There is no APP that can convert all XML files into PDFs because the XML structure is flexible and diverse. The core of XML to PDF is to convert the data structure into a page layout, which requires parsing XML and generating PDF. Common methods include parsing XML using Python libraries such as ElementTree and generating PDFs using ReportLab library. For complex XML, it may be necessary to use XSLT transformation structures. When optimizing performance, consider using multithreaded or multiprocesses and select the appropriate library.

What is the function of C language sum? What is the function of C language sum? Apr 03, 2025 pm 02:21 PM

There is no built-in sum function in C language, so it needs to be written by yourself. Sum can be achieved by traversing the array and accumulating elements: Loop version: Sum is calculated using for loop and array length. Pointer version: Use pointers to point to array elements, and efficient summing is achieved through self-increment pointers. Dynamically allocate array version: Dynamically allocate arrays and manage memory yourself, ensuring that allocated memory is freed to prevent memory leaks.

See all articles