Home > Database > Mysql Tutorial > [MySQL优化案例]系列 — RAND()优化_MySQL

[MySQL优化案例]系列 — RAND()优化_MySQL

WBOY
Release: 2016-05-31 08:48:41
Original
1031 people have browsed it

众所周知,在MySQL中,如果直接 ORDER BY RAND() 的话,效率非常差,因为会多次执行。事实上,如果等值查询也是用 RAND() 的话也如此,我们先来看看下面这几个SQL的不同执行计划和执行耗时。首先,看下建表DDL,这是一个没有显式自增主键的InnoDB表:

[yejr@imysql]> show create table t_innodb_random/G*************************** 1. row ***************************Table: t_innodb_randomCreate Table: CREATE TABLE `t_innodb_random` (`id` int(10) unsigned NOT NULL,`user` varchar(64) NOT NULL DEFAULT '',KEY `idx_id` (`id`)) ENGINE=InnoDB DEFAULT CHARSET=latin1
Copy after login

往这个表里灌入一些测试数据,至少10万以上, id 字段也是乱序的。

[yejr@imysql]> select count(*) from t_innodb_random/G*************************** 1. row ***************************count(*): 393216
Copy after login

1、常量等值检索:

[yejr@imysql]> explain select id from t_innodb_random where id = 13412/G*************************** 1. row ***************************id: 1select_type: SIMPLEtable: t_innodb_randomtype: refpossible_keys: idx_idkey: idx_idkey_len: 4<strong>ref: constrows: 1Extra: Using index</strong>[yejr@imysql]> select id from t_innodb_random where id = 13412;1 row in set (0.00 sec)
Copy after login

可以看到执行计划很不错,是常量等值查询,速度非常快。

2、使用RAND()函数乘以常量,求得随机数后检索:

[yejr@imysql]> explain select id from t_innodb_random where id = round(rand()*13241324)/G*************************** 1. row ***************************id: 1select_type: SIMPLEtable: t_innodb_randomtype: indexpossible_keys: NULLkey: idx_idkey_len: 4<strong>ref: NULLrows: 393345Extra: Using where; Using index</strong>[yejr@imysql]> select id from t_innodb_random where id = round(rand()*13241324)/GEmpty set (0.26 sec)
Copy after login

可以看到执行计划很糟糕,虽然是只扫描索引,但是做了全索引扫描,效率非常差。因为WHERE条件中包含了RAND(),使得MySQL把它当做变量来处理,无法用常量等值的方式查询,效率很低。

我们把常量改成取t_innodb_random表的最大id值,再乘以RAND()求得随机数后检索看看什么情况:

[yejr@imysql]> explain select id from t_innodb_random where id = round(rand()*(select max(id) from t_innodb_random))/G*************************** 1. row ***************************id: 1select_type: PRIMARYtable: t_innodb_randomtype: indexpossible_keys: NULLkey: idx_idkey_len: 4<strong>ref: NULLrows: 393345Extra: Using where; Using index</strong>*************************** 2. row ***************************id: 2select_type: SUBQUERYtable: NULLtype: NULLpossible_keys: NULLkey: NULLkey_len: NULLref: NULLrows: NULLExtra: Select tables optimized away[yejr@imysql]> select id from t_innodb_random where id = round(rand()*(select max(id) from t_innodb_random))/GEmpty set (0.27 sec)
Copy after login

可以看到,执行计划依然是全索引扫描,执行耗时也基本相当。

3、改造成普通子查询模式 ,这里有两次子查询

<strong>[yejr@imysql]> explain select id from t_innodb_random where id = (select round(rand()*(select max(id) from t_innodb_random)) as nid)/G*************************** 1. row ***************************id: 1select_type: PRIMARYtable: t_innodb_randomtype: indexpossible_keys: NULLkey: idx_idkey_len: 4ref: NULLrows: 393345Extra: Using where; Using index*************************** 2. row ***************************id: 3select_type: SUBQUERYtable: NULLtype: NULLpossible_keys: NULLkey: NULLkey_len: NULLref: NULLrows: NULLExtra: Select tables optimized away[yejr@imysql]> select id from t_innodb_random where id = (select round(rand()*(select max(id) from t_innodb_random)) as nid)/GEmpty set (0.27 sec)</strong>
Copy after login

可以看到,执行计划也不好,执行耗时较慢。

4、改造成JOIN关联查询,不过最大值还是用常量表示

[yejr@imysql]> explain select id from t_innodb_random t1 join (select round(rand()*13241324) as id2) as t2 where t1.id = t2.id2/G*************************** 1. row ***************************id: 1select_type: PRIMARYtable: <derived2>type: systempossible_keys: NULLkey: NULLkey_len: NULL<strong>ref: NULLrows: 1Extra:</strong>*************************** 2. row ***************************id: 1select_type: PRIMARYtable: t1type: refpossible_keys: idx_idkey: idx_idkey_len: 4<strong>ref: constrows: 1Extra: Using where; Using index</strong>*************************** 3. row ***************************id: 2select_type: DERIVEDtable: NULLtype: NULLpossible_keys: NULLkey: NULLkey_len: NULLref: NULLrows: NULLExtra: No tables used[yejr@imysql]> select id from t_innodb_random t1 join (select round(rand()*13241324) as id2) as t2 where t1.id = t2.id2/GEmpty set (0.00 sec)</derived2>
Copy after login

这时候执行计划就非常完美了,和最开始的常量等值查询是一样的了,执行耗时也非常之快。这种方法虽然很好,但是有可能查询不到记录,改造范围查找,但结果LIMIT 1就可以了:

[yejr@imysql]> explain select id from t_innodb_random where id > (select round(rand()*(select max(id) from t_innodb_random)) as nid) limit 1/G*************************** 1. row ***************************id: 1select_type: PRIMARYtable: t_innodb_randomtype: indexpossible_keys: NULLkey: idx_idkey_len: 4<strong>ref: NULLrows: 393345Extra: Using where; Using index</strong>*************************** 2. row ***************************id: 3select_type: SUBQUERYtable: NULLtype: NULLpossible_keys: NULLkey: NULLkey_len: NULLref: NULLrows: NULLExtra: Select tables optimized away[yejr@imysql]> select id from t_innodb_random where id > (select round(rand()*(select max(id) from t_innodb_random)) as nid) limit 1/G*************************** 1. row ***************************id: 13011 row in set (0.00 sec)
Copy after login

可以看到,虽然执行计划也是全索引扫描,但是因为有了LIMIT 1,只需要找到一条记录,即可终止扫描,所以效率还是很快的。

小结:从数据库中随机取一条记录时,可以把RAND()生成随机数放在JOIN子查询中以提高效率。

5、再来看看用ORDRR BY RAND()方式一次取得多个随机值的方式:

[yejr@imysql]> explain select id from t_innodb_random order by rand() limit 1000/G*************************** 1. row ***************************id: 1select_type: SIMPLEtable: t_innodb_randomtype: indexpossible_keys: NULLkey: idx_idkey_len: 4<strong>ref: NULLrows: 393345Extra: Using index; Using temporary; Using filesort</strong>[yejr@imysql]> select id from t_innodb_random order by rand() limit 1000;1000 rows in set (0.41 sec)
Copy after login

全索引扫描,生成排序临时表,太差太慢了。

6、把随机数放在子查询里看看:

[yejr@imysql]> explain select id from t_innodb_random where id > (select rand() * (select max(id) from t_innodb_random) as nid) limit 1000/G*************************** 1. row ***************************id: 1select_type: PRIMARYtable: t_innodb_randomtype: indexpossible_keys: NULLkey: idx_idkey_len: 4<strong>ref: NULLrows: 393345Extra: Using where; Using index</strong>*************************** 2. row ***************************id: 3select_type: SUBQUERYtable: NULLtype: NULLpossible_keys: NULLkey: NULLkey_len: NULLref: NULLrows: NULLExtra: Select tables optimized away[yejr@imysql]> select id from t_innodb_random where id > (select rand() * (select max(id) from t_innodb_random) as nid) limit 1000/G1000 rows in set (0.04 sec)
Copy after login

嗯,提速了不少,这个看起来还不赖:)

7、仿照上面的方法,改成JOIN和随机数子查询关联

[yejr@imysql]> explain select id from t_innodb_random t1 join (select rand() * (select max(id) from t_innodb_random) as nid) t2 on t1.id > t2.nid limit 1000/G*************************** 1. row ***************************id: 1select_type: PRIMARYtable: <derived2>type: systempossible_keys: NULLkey: NULLkey_len: NULL<strong>ref: NULLrows: 1Extra:</strong>*************************** 2. row ***************************id: 1select_type: PRIMARYtable: t1type: rangepossible_keys: idx_idkey: idx_idkey_len: 4<strong>ref: NULLrows: 196672Extra: Using where; Using index</strong>*************************** 3. row ***************************id: 2select_type: DERIVEDtable: NULLtype: NULLpossible_keys: NULLkey: NULLkey_len: NULLref: NULLrows: NULLExtra: No tables used*************************** 4. row ***************************id: 3select_type: SUBQUERYtable: NULLtype: NULLpossible_keys: NULLkey: NULLkey_len: NULLref: NULLrows: NULLExtra: Select tables optimized away[yejr@imysql]> select id from t_innodb_random t1 join (select rand() * (select max(id) from t_innodb_random) as nid) t2 on t1.id > t2.nid limit 1000/G1000 rows in set (0.00 sec)</derived2>
Copy after login

可以看到,全索引检索,发现符合记录的条件后,直接取得1000行,这个方法是最快的。

综上,想从MySQL数据库中随机取一条或者N条记录时,最好把RAND()生成随机数放在JOIN子查询中以提高效率。上面说了那么多的废话,最后简单说下,就是把下面这个SQL:

SELECT id FROM table ORDER BY RAND() LIMIT n;
Copy after login

改造成下面这个:

SELECT id FROM table t1, JOIN (SELECT RAND() * (SELECT MAX(id) FROM table) AS nid) t2 ON t1.id > t2.nid LIMIT n;
Copy after login

就可以享受在SQL中直接取得随机数了,不用再在程序中构造一串随机数去检索了。

source:php.cn
Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
Popular Tutorials
More>
Latest Downloads
More>
Web Effects
Website Source Code
Website Materials
Front End Template