


How to solve the problem of precision loss after the primary key ID of SpringBoot snowflake algorithm is transmitted to the front end
Problem description
Range of Java backend Long type
- ##-2^63~2^63, that is: -9223372036854775808~ 9223372036854775807, which is the 19th digit of
.
This number can be obtained through the methods: Long.MAX_VALUE, Long_MIN_VALUE.
##-2^53~2^53, that is: -9007199254740991 ~9007199254740991, it is
- 16 bits
- .
This number can be obtained through the methods: Number.MAX_SAFE_INTEGER, Number.MIN_SAFE_INTEGER.
- Conclusion
It can be seen that the Long width of the Java backend is larger than that of the front end. The snowflake algorithm generally generates numbers with a width of 18 or 19 bits, so problems will occur at this time.
Project scenario1. Table structure
The primary key type is BIGINT, which stores the ID generated by the snowflake algorithm.
CREATE TABLE `user` ( `id` BIGINT(32) NOT NULL COMMENT '用户id', ... PRIMARY KEY (`id`) USING BTREE ) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COMMENT='用户表';
2.Entity
Use the Long type to correspond to the BIGINT type of the database ID.
The snowflake algorithm of MybatisPlus is used here to automatically generate a 19-digit pure number as the primary key ID. (Of course, you can also manually generate the ID using the snowflake algorithm)import lombok.Data; @Data public class User { @TableId(type = IdType.ASSIGN_ID) private Long id; //其他成员 }
3. Respond to the front end
Response to the front end with JSON data is normal
{ "id": 1352166380631257089, ... }
package com.knife.controller; import com.knife.entity.UserVO; import org.springframework.web.bind.annotation.GetMapping; import org.springframework.web.bind.annotation.RequestMapping; import org.springframework.web.bind.annotation.RestController; @RestController @RequestMapping("user") public class UserController { @GetMapping("find") public UserVO find(Long id) { UserVO userVO = new UserVO(); userVO.setId(id); userVO.setUsername("Tony"); return userVO; } }
package com.knife.entity; import lombok.Data; @Data public class UserVO { private Long id; private String username; }
Problem Recurrence
Why is there no problem?
The front end is passed to the back end: SpingMVC will automatically convert the String type ID to the Long type, and there will be no problem. The back end responds to the front end: it is in JSON format, has nothing to do with JS, and there will be no problem. Question
When will something go wrong?
After the front end receives the JSON, it serializes it into a JS object and then performs other operations. There will be problems when converting JSON to JS objects, as follows:
As you can see, the original id is 1352213368413982722, and after being serialized into a JS object, it becomes 1352213368413982700
const json = '{"id": 1352213368413982722, "name": "Tony"}'; const obj = JSON.parse(json); console.log(obj.id); console.log(obj.name);
- The front end uses the String type to save the ID to maintain accuracy, and the back end and database continue to use the Long (BigINT) type
- Option 1 uses the String type When doing database ID, query performance will drop significantly. So option 2 should be adopted. This article introduces option 2.
Introduction
Customize ObjectMapper.
Option 1: ToStringSerializer (recommended)package com.knife.config; import com.fasterxml.jackson.databind.ObjectMapper; import com.fasterxml.jackson.databind.module.SimpleModule; import com.fasterxml.jackson.databind.ser.std.ToStringSerializer; import org.springframework.context.annotation.Bean; import org.springframework.context.annotation.Configuration; import org.springframework.http.converter.json.Jackson2ObjectMapperBuilder; @Configuration public class JacksonConfig { @Bean public ObjectMapper jacksonObjectMapper(Jackson2ObjectMapperBuilder builder) { ObjectMapper objectMapper = builder.createXmlMapper(false).build(); // 全局配置序列化返回 JSON 处理 SimpleModule simpleModule = new SimpleModule(); // 将使用String来序列化Long类型 simpleModule.addSerializer(Long.class, ToStringSerializer.instance); simpleModule.addSerializer(Long.TYPE, ToStringSerializer.instance); objectMapper.registerModule(simpleModule); return objectMapper; } }
Option 2: Custom serializer (not recommended)
package com.knife.config; import com.fasterxml.jackson.core.JsonGenerator; import com.fasterxml.jackson.databind.SerializerProvider; import com.fasterxml.jackson.databind.annotation.JacksonStdImpl; import com.fasterxml.jackson.databind.ser.std.NumberSerializer; import java.io.IOException; /** * 超出 JS 最大最小值 处理 */ @JacksonStdImpl public class BigNumberSerializer extends NumberSerializer { /** * 根据 JS Number.MAX_SAFE_INTEGER 与 Number.MIN_SAFE_INTEGER 得来 */ private static final long MAX_SAFE_INTEGER = 9007199254740991L; private static final long MIN_SAFE_INTEGER = -9007199254740991L; /** * 提供实例 */ public static final BigNumberSerializer instance = new BigNumberSerializer(Number.class); public BigNumberSerializer(Class<? extends Number> rawType) { super(rawType); } @Override public void serialize(Number value, JsonGenerator gen, SerializerProvider provider) throws IOException { // 超出范围 序列化位字符串 if (value.longValue() > MIN_SAFE_INTEGER && value.longValue() < MAX_SAFE_INTEGER) { super.serialize(value, gen, provider); } else { gen.writeString(value.toString()); } } }
package com.knife.config; import com.fasterxml.jackson.databind.ObjectMapper; import com.fasterxml.jackson.databind.module.SimpleModule; import com.fasterxml.jackson.databind.ser.std.ToStringSerializer; import org.springframework.context.annotation.Bean; import org.springframework.context.annotation.Configuration; import org.springframework.http.converter.json.Jackson2ObjectMapperBuilder; @Configuration public class JacksonConfig { @Bean public ObjectMapper jacksonObjectMapper(Jackson2ObjectMapperBuilder builder) { ObjectMapper objectMapper = builder.createXmlMapper(false).build(); // 全局配置序列化返回 JSON 处理 SimpleModule simpleModule = new SimpleModule(); // 将使用自定义序列化器来序列化Long类型 simpleModule.addSerializer(Long.class, BigNumberSerializer.instance); simpleModule.addSerializer(Long.TYPE, BigNumberSerializer.instance); objectMapper.registerModule(simpleModule); return objectMapper; } }
Visit: http://localhost:8080/user/find?id=1352213368413982722
Method 2: Local processing
Instructions
Add: @JsonSerialize(using= ToStringSerializer.class) to the field.
Example
package com.knife.entity; import com.fasterxml.jackson.databind.annotation.JsonSerialize; import com.fasterxml.jackson.databind.ser.std.ToStringSerializer; import lombok.Data; @Data public class UserVO { @JsonSerialize(using= ToStringSerializer.class) private Long id; private String username; }
The above is the detailed content of How to solve the problem of precision loss after the primary key ID of SpringBoot snowflake algorithm is transmitted to the front end. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics



Introduction to Jasypt Jasypt is a java library that allows a developer to add basic encryption functionality to his/her project with minimal effort and does not require a deep understanding of how encryption works. High security for one-way and two-way encryption. , standards-based encryption technology. Encrypt passwords, text, numbers, binaries... Suitable for integration into Spring-based applications, open API, for use with any JCE provider... Add the following dependency: com.github.ulisesbocchiojasypt-spring-boot-starter2. 1.1Jasypt benefits protect our system security. Even if the code is leaked, the data source can be guaranteed.

Usage scenario 1. The order was placed successfully but the payment was not made within 30 minutes. The payment timed out and the order was automatically canceled. 2. The order was signed and no evaluation was conducted for 7 days after signing. If the order times out and is not evaluated, the system defaults to a positive rating. 3. The order is placed successfully. If the merchant does not receive the order for 5 minutes, the order is cancelled. 4. The delivery times out, and push SMS reminder... For scenarios with long delays and low real-time performance, we can Use task scheduling to perform regular polling processing. For example: xxl-job Today we will pick

1. Redis implements distributed lock principle and why distributed locks are needed. Before talking about distributed locks, it is necessary to explain why distributed locks are needed. The opposite of distributed locks is stand-alone locks. When we write multi-threaded programs, we avoid data problems caused by operating a shared variable at the same time. We usually use a lock to mutually exclude the shared variables to ensure the correctness of the shared variables. Its scope of use is in the same process. If there are multiple processes that need to operate a shared resource at the same time, how can they be mutually exclusive? Today's business applications are usually microservice architecture, which also means that one application will deploy multiple processes. If multiple processes need to modify the same row of records in MySQL, in order to avoid dirty data caused by out-of-order operations, distribution needs to be introduced at this time. The style is locked. Want to achieve points

Springboot reads the file, but cannot access the latest development after packaging it into a jar package. There is a situation where springboot cannot read the file after packaging it into a jar package. The reason is that after packaging, the virtual path of the file is invalid and can only be accessed through the stream. Read. The file is under resources publicvoidtest(){Listnames=newArrayList();InputStreamReaderread=null;try{ClassPathResourceresource=newClassPathResource("name.txt");Input

SpringBoot and SpringMVC are both commonly used frameworks in Java development, but there are some obvious differences between them. This article will explore the features and uses of these two frameworks and compare their differences. First, let's learn about SpringBoot. SpringBoot was developed by the Pivotal team to simplify the creation and deployment of applications based on the Spring framework. It provides a fast, lightweight way to build stand-alone, executable

When Springboot+Mybatis-plus does not use SQL statements to perform multi-table adding operations, the problems I encountered are decomposed by simulating thinking in the test environment: Create a BrandDTO object with parameters to simulate passing parameters to the background. We all know that it is extremely difficult to perform multi-table operations in Mybatis-plus. If you do not use tools such as Mybatis-plus-join, you can only configure the corresponding Mapper.xml file and configure The smelly and long ResultMap, and then write the corresponding sql statement. Although this method seems cumbersome, it is highly flexible and allows us to

1. Customize RedisTemplate1.1, RedisAPI default serialization mechanism. The API-based Redis cache implementation uses the RedisTemplate template for data caching operations. Here, open the RedisTemplate class and view the source code information of the class. publicclassRedisTemplateextendsRedisAccessorimplementsRedisOperations, BeanClassLoaderAware{//Declare key, Various serialization methods of value, the initial value is empty @NullableprivateRedisSe

In projects, some configuration information is often needed. This information may have different configurations in the test environment and the production environment, and may need to be modified later based on actual business conditions. We cannot hard-code these configurations in the code. It is best to write them in the configuration file. For example, you can write this information in the application.yml file. So, how to get or use this address in the code? There are 2 methods. Method 1: We can get the value corresponding to the key in the configuration file (application.yml) through the ${key} annotated with @Value. This method is suitable for situations where there are relatively few microservices. Method 2: In actual projects, When business is complicated, logic
