How does java Count count elements in a stream?
Explanation
1. Count is a terminal operation that can count the total number of elements in the stream. The return value is of long type.
2. count() returns the count of elements in the stream. This is a special case of induction (an induction operation takes a sequence of input elements and combines them into a summary result by repeatedly applying the combining operation). This is a terminal operation and may have consequences and side effects. After a terminal operation is performed, the pipe is considered consumed and cannot be reused.
Example
// 验证 list 中 string 是否有以 a 开头的, 匹配到第一个,即返回 true boolean anyStartsWithA = stringCollection .stream() .anyMatch((s) -> s.startsWith("a")); System.out.println(anyStartsWithA); // true // 验证 list 中 string 是否都是以 a 开头的 boolean allStartsWithA = stringCollection .stream() .allMatch((s) -> s.startsWith("a")); System.out.println(allStartsWithA); // false // 验证 list 中 string 是否都不是以 z 开头的, boolean noneStartsWithZ = stringCollection .stream() .noneMatch((s) -> s.startsWith("z")); System.out.println(noneStartsWithZ); // true
The above is the detailed content of How does java Count count elements in a stream?. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics



Guide to Perfect Number in Java. Here we discuss the Definition, How to check Perfect number in Java?, examples with code implementation.

Guide to Random Number Generator in Java. Here we discuss Functions in Java with examples and two different Generators with ther examples.

Guide to Weka in Java. Here we discuss the Introduction, how to use weka java, the type of platform, and advantages with examples.

Guide to Smith Number in Java. Here we discuss the Definition, How to check smith number in Java? example with code implementation.

In this article, we have kept the most asked Java Spring Interview Questions with their detailed answers. So that you can crack the interview.

Java 8 introduces the Stream API, providing a powerful and expressive way to process data collections. However, a common question when using Stream is: How to break or return from a forEach operation? Traditional loops allow for early interruption or return, but Stream's forEach method does not directly support this method. This article will explain the reasons and explore alternative methods for implementing premature termination in Stream processing systems. Further reading: Java Stream API improvements Understand Stream forEach The forEach method is a terminal operation that performs one operation on each element in the Stream. Its design intention is

Guide to TimeStamp to Date in Java. Here we also discuss the introduction and how to convert timestamp to date in java along with examples.

Capsules are three-dimensional geometric figures, composed of a cylinder and a hemisphere at both ends. The volume of the capsule can be calculated by adding the volume of the cylinder and the volume of the hemisphere at both ends. This tutorial will discuss how to calculate the volume of a given capsule in Java using different methods. Capsule volume formula The formula for capsule volume is as follows: Capsule volume = Cylindrical volume Volume Two hemisphere volume in, r: The radius of the hemisphere. h: The height of the cylinder (excluding the hemisphere). Example 1 enter Radius = 5 units Height = 10 units Output Volume = 1570.8 cubic units explain Calculate volume using formula: Volume = π × r2 × h (4
