How to use springboot to integrate RateLimiter current limiting
RateLimiter token bucket schematic
As time passes, the system will follow a constant 1/QPS time interval (if QPS=100, Then the interval is 10ms) Add Token to the bucket (imagine the opposite of leakage, there is a faucet constantly adding water), if the bucket is full, no more will be added. When a new request comes, each will take away a Token. If If there is no token available, it will block or deny service.
Another benefit of the token bucket is that it can easily change the speed. Once the speed needs to be increased, increase it as needed and put it in the bucket. The rate of tokens. Generally, a certain number of tokens will be added to the bucket regularly (such as 100 milliseconds). Some variant algorithms calculate the number of tokens that should be added in real time.
Token bucket is a commonly used traffic control technology. The token bucket itself has no discarding and priority policies.
Principle
1. Tokens are put into the bucket at a certain rate.
2. Each token allows the source to send a certain number of bits.
3. To send a packet, the traffic conditioner removes a number of tokens from the bucket equal to the packet size.
4. If there are not enough tokens to send a packet, the packet waits until there are enough tokens (in the case of a shaper) or the packet is dropped, possibly marked with a lower DSCP (in the case of a policyr).
5. Buckets have a specific capacity. If the bucket is full, newly added tokens will be discarded. Therefore, the maximum amount of burst data a source can send onto the network at any time is proportional to the bucket size. The token bucket allows bursts, but cannot exceed the limit.
Method summary
Modifiers and types | Method and description |
---|---|
double | acquire() Gets a permission from RateLimiter. This method will be blocked until the request is obtained. |
double | acquire(int permits) Obtains the specified number of permits from RateLimiter. This method will be blocked until the request is obtained |
static RateLimiter | create(double permitsPerSecond) Creates a RateLimiter based on the specified stable throughput rate, where the throughput rate refers to the number of permits per second (usually QPS, how many queries per second) |
static RateLimiter | create(double permitsPerSecond, long warmupPeriod, TimeUnit unit) Create a RateLimiter based on the specified stable throughput rate and warm-up period. The throughput rate here refers to how much per second The number of licenses (usually refers to QPS, how many requests per second). During this warm-up period, the number of licenses allocated by RateLimiter per second will grow steadily until it reaches its maximum rate at the end of the warm-up period. (As long as there are enough requests to saturate it) |
double | getRate() Returns the stable rate in the RateLimiter configuration in licenses per second |
void | setRate(double permitsPerSecond) updates the stable rate of RateLimite. The parameter permitsPerSecond is provided by the factory method that constructs RateLimiter. |
String | toString() Returns the character representation of the object |
boolean | tryAcquire() Get the permission from RateLimiter, if the permission can be obtained immediately without delay |
boolean | tryAcquire(int permits) Get the number of permissions from RateLimiter, If the number of permits can be obtained immediately without delay |
boolean | tryAcquire(int permits, long timeout, TimeUnit unit) Gets the specified number from RateLimiter Number of licenses. If the number of licenses can be obtained within a time period that does not exceed the timeout, or if the number of licenses cannot be obtained before the timeout expires, then false is returned immediately (no need to wait) |
boolean | tryAcquire(long timeout, TimeUnit unit) Obtains permission from RateLimiter If the permission can be obtained within a time not exceeding timeout, or if the permission cannot be obtained before timeout expires, then return immediately false (no need to wait) |
Start posting code
pom.xml
<!--guava RateLimiter限流--> <!-- https://mvnrepository.com/artifact/com.google.guava/guava --> <dependency> <groupId>com.google.guava</groupId> <artifactId>guava</artifactId> <version>28.2-jre</version> </dependency>
Custom interface Limit
package com.zjy.knife4j.inte; import java.lang.annotation.*; /** * 限流注解 */ @Inherited @Documented @Target(ElementType.METHOD) @Retention(RetentionPolicy.RUNTIME) public @interface Limit { // 默认每秒放入桶中的token double limitNum() default 20; String name() default ""; }
aop aspect
package com.zjy.knife4j.aspect; import com.google.common.util.concurrent.RateLimiter; import com.zjy.knife4j.inte.Limit; import org.aspectj.lang.ProceedingJoinPoint; import org.aspectj.lang.Signature; import org.aspectj.lang.annotation.Around; import org.aspectj.lang.annotation.Aspect; import org.aspectj.lang.annotation.Pointcut; import org.aspectj.lang.reflect.MethodSignature; import org.slf4j.Logger; import org.slf4j.LoggerFactory; import org.springframework.stereotype.Component; import java.lang.reflect.Method; import java.util.concurrent.ConcurrentHashMap; @Aspect @Component public class RateLimitAspect { /**日志对象*/ private static final Logger logger = LoggerFactory.getLogger(RateLimitAspect.class); private ConcurrentHashMap<String, RateLimiter> RATE_LIMITER = new ConcurrentHashMap<>(); private RateLimiter rateLimiter; @Pointcut("@annotation(com.zjy.knife4j.inte.Limit)") public void serviceLimit() { } @Around("serviceLimit()") public Object around(ProceedingJoinPoint point) throws Throwable { Object obj = null; //获取拦截的方法名 Signature sig = point.getSignature(); //获取拦截的方法名 MethodSignature msig = (MethodSignature) sig; //返回被织入增加处理目标对象 Object target = point.getTarget(); //为了获取注解信息 Method currentMethod = target.getClass().getMethod(msig.getName(), msig.getParameterTypes()); //获取注解信息 Limit annotation = currentMethod.getAnnotation(Limit.class); double limitNum = annotation.limitNum(); //获取注解每秒加入桶中的token String functionName = msig.getName(); // 注解所在方法名区分不同的限流策略 if(RATE_LIMITER.containsKey(functionName)){ rateLimiter=RATE_LIMITER.get(functionName); }else { RATE_LIMITER.put(functionName, RateLimiter.create(limitNum)); rateLimiter=RATE_LIMITER.get(functionName); } if(rateLimiter.tryAcquire()) { logger.info("执行成功!!!...做一些业务处理"); return point.proceed(); } else { logger.info("请求繁忙...做一些业务处理"); return null; } } }
RateLimiterController
package com.zjy.knife4j.controller; import com.zjy.knife4j.inte.Limit; import org.slf4j.Logger; import org.slf4j.LoggerFactory; import org.springframework.web.bind.annotation.GetMapping; import org.springframework.web.bind.annotation.RequestMapping; import org.springframework.web.bind.annotation.RestController; @RequestMapping("/ratelimiter") @RestController public class RateLimiterController { /** * 开启限流 * @return */ @GetMapping("/open") @Limit(limitNum = 1, name = "test1") public String openRateLimiter1() { System.out.println("【限流执行了....编写业务....】"); return "限流执行了"; } /** * 开启限流 * @return */ @GetMapping("/open2") @Limit(limitNum = 1, name = "test2") public String openRateLimiter2() { System.out.println("【限流执行了222】"); return "限流执行了222"; } /** * 未开启限流 * @return */ @GetMapping("/close") public String closeRateLimiter() { System.out.println("【不限流执行了】"); return "不限流执行了"; } }
After pasting the code, start testing
Start the service and access the interface that adds the current limiting annotation
Visit the unannotated interface again
The console prints the result:
The above is the detailed content of How to use springboot to integrate RateLimiter current limiting. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics



Introduction to Jasypt Jasypt is a java library that allows a developer to add basic encryption functionality to his/her project with minimal effort and does not require a deep understanding of how encryption works. High security for one-way and two-way encryption. , standards-based encryption technology. Encrypt passwords, text, numbers, binaries... Suitable for integration into Spring-based applications, open API, for use with any JCE provider... Add the following dependency: com.github.ulisesbocchiojasypt-spring-boot-starter2. 1.1Jasypt benefits protect our system security. Even if the code is leaked, the data source can be guaranteed.

Usage scenario 1. The order was placed successfully but the payment was not made within 30 minutes. The payment timed out and the order was automatically canceled. 2. The order was signed and no evaluation was conducted for 7 days after signing. If the order times out and is not evaluated, the system defaults to a positive rating. 3. The order is placed successfully. If the merchant does not receive the order for 5 minutes, the order is cancelled. 4. The delivery times out, and push SMS reminder... For scenarios with long delays and low real-time performance, we can Use task scheduling to perform regular polling processing. For example: xxl-job Today we will pick

1. Redis implements distributed lock principle and why distributed locks are needed. Before talking about distributed locks, it is necessary to explain why distributed locks are needed. The opposite of distributed locks is stand-alone locks. When we write multi-threaded programs, we avoid data problems caused by operating a shared variable at the same time. We usually use a lock to mutually exclude the shared variables to ensure the correctness of the shared variables. Its scope of use is in the same process. If there are multiple processes that need to operate a shared resource at the same time, how can they be mutually exclusive? Today's business applications are usually microservice architecture, which also means that one application will deploy multiple processes. If multiple processes need to modify the same row of records in MySQL, in order to avoid dirty data caused by out-of-order operations, distribution needs to be introduced at this time. The style is locked. Want to achieve points

Springboot reads the file, but cannot access the latest development after packaging it into a jar package. There is a situation where springboot cannot read the file after packaging it into a jar package. The reason is that after packaging, the virtual path of the file is invalid and can only be accessed through the stream. Read. The file is under resources publicvoidtest(){Listnames=newArrayList();InputStreamReaderread=null;try{ClassPathResourceresource=newClassPathResource("name.txt");Input

When Springboot+Mybatis-plus does not use SQL statements to perform multi-table adding operations, the problems I encountered are decomposed by simulating thinking in the test environment: Create a BrandDTO object with parameters to simulate passing parameters to the background. We all know that it is extremely difficult to perform multi-table operations in Mybatis-plus. If you do not use tools such as Mybatis-plus-join, you can only configure the corresponding Mapper.xml file and configure The smelly and long ResultMap, and then write the corresponding sql statement. Although this method seems cumbersome, it is highly flexible and allows us to

SpringBoot and SpringMVC are both commonly used frameworks in Java development, but there are some obvious differences between them. This article will explore the features and uses of these two frameworks and compare their differences. First, let's learn about SpringBoot. SpringBoot was developed by the Pivotal team to simplify the creation and deployment of applications based on the Spring framework. It provides a fast, lightweight way to build stand-alone, executable

1. Customize RedisTemplate1.1, RedisAPI default serialization mechanism. The API-based Redis cache implementation uses the RedisTemplate template for data caching operations. Here, open the RedisTemplate class and view the source code information of the class. publicclassRedisTemplateextendsRedisAccessorimplementsRedisOperations, BeanClassLoaderAware{//Declare key, Various serialization methods of value, the initial value is empty @NullableprivateRedisSe

In projects, some configuration information is often needed. This information may have different configurations in the test environment and the production environment, and may need to be modified later based on actual business conditions. We cannot hard-code these configurations in the code. It is best to write them in the configuration file. For example, you can write this information in the application.yml file. So, how to get or use this address in the code? There are 2 methods. Method 1: We can get the value corresponding to the key in the configuration file (application.yml) through the ${key} annotated with @Value. This method is suitable for situations where there are relatively few microservices. Method 2: In actual projects, When business is complicated, logic
