Definition of likelihood function: given joint sample valueXThe following functions about (unknown) parameters
##Likelihood function: What Such parameters are exactly the true values when combined with our data.
2. Linear regression likelihood function Log likelihood: 3. Linear regression objective function (expression of error, our purpose is to make the difference between the true value and the predicted value Minimum error) (The derivative is 0 to obtain the extreme value, and the parameters of the function are obtained) Logistic regressionLogistic regression is linear The regression result is added with a layer of Sigmoid function 1. Logistic regression function 2. Logistic regression likelihood function Premise data obeys Bernoulli distribution Log likelihood: IntroductionConvert to gradient descent task, logistic regression objective function
Gradient descent method solution My understanding is to seek derivation and update parameters, stop after reaching a certain condition, and obtain an approximately optimal solutionCode implementationSigmoid functiondef sigmoid(z): return 1 / (1 + np.exp(-z))
def model(X, theta): return sigmoid(np.dot(X, theta.T))
def cost(X, y, theta): left = np.multiply(-y, np.log(model(X, theta))) right = np.multiply(1 - y, np.log(1 - model(X, theta))) return np.sum(left - right) / (len(X))
def gradient(X, y, theta): grad = np.zeros(theta.shape) error = (model(X, theta)- y).ravel() for j in range(len(theta.ravel())): #for each parmeter term = np.multiply(error, X[:,j]) grad[0, j] = np.sum(term) / len(X) return grad
STOP_ITER = 0 STOP_COST = 1 STOP_GRAD = 2 def stopCriterion(type, value, threshold): # 设定三种不同的停止策略 if type == STOP_ITER: # 设定迭代次数 return value > threshold elif type == STOP_COST: # 根据损失值停止 return abs(value[-1] - value[-2]) < threshold elif type == STOP_GRAD: # 根据梯度变化停止 return np.linalg.norm(value) < threshold
import numpy.random #洗牌 def shuffleData(data): np.random.shuffle(data) cols = data.shape[1] X = data[:, 0:cols-1] y = data[:, cols-1:] return X, y
def descent(data, theta, batchSize, stopType, thresh, alpha): # 梯度下降求解 init_time = time.time() i = 0 # 迭代次数 k = 0 # batch X, y = shuffleData(data) grad = np.zeros(theta.shape) # 计算的梯度 costs = [cost(X, y, theta)] # 损失值 while True: grad = gradient(X[k:k + batchSize], y[k:k + batchSize], theta) k += batchSize # 取batch数量个数据 if k >= n: k = 0 X, y = shuffleData(data) # 重新洗牌 theta = theta - alpha * grad # 参数更新 costs.append(cost(X, y, theta)) # 计算新的损失 i += 1 if stopType == STOP_ITER: value = i elif stopType == STOP_COST: value = costs elif stopType == STOP_GRAD: value = grad if stopCriterion(stopType, value, thresh): break return theta, i - 1, costs, grad, time.time() - init_time
import numpy as np import pandas as pd import matplotlib.pyplot as plt import os import numpy.random import time def sigmoid(z): return 1 / (1 + np.exp(-z)) def model(X, theta): return sigmoid(np.dot(X, theta.T)) def cost(X, y, theta): left = np.multiply(-y, np.log(model(X, theta))) right = np.multiply(1 - y, np.log(1 - model(X, theta))) return np.sum(left - right) / (len(X)) def gradient(X, y, theta): grad = np.zeros(theta.shape) error = (model(X, theta) - y).ravel() for j in range(len(theta.ravel())): # for each parmeter term = np.multiply(error, X[:, j]) grad[0, j] = np.sum(term) / len(X) return grad STOP_ITER = 0 STOP_COST = 1 STOP_GRAD = 2 def stopCriterion(type, value, threshold): # 设定三种不同的停止策略 if type == STOP_ITER: # 设定迭代次数 return value > threshold elif type == STOP_COST: # 根据损失值停止 return abs(value[-1] - value[-2]) < threshold elif type == STOP_GRAD: # 根据梯度变化停止 return np.linalg.norm(value) < threshold # 洗牌 def shuffleData(data): np.random.shuffle(data) cols = data.shape[1] X = data[:, 0:cols - 1] y = data[:, cols - 1:] return X, y def descent(data, theta, batchSize, stopType, thresh, alpha): # 梯度下降求解 init_time = time.time() i = 0 # 迭代次数 k = 0 # batch X, y = shuffleData(data) grad = np.zeros(theta.shape) # 计算的梯度 costs = [cost(X, y, theta)] # 损失值 while True: grad = gradient(X[k:k + batchSize], y[k:k + batchSize], theta) k += batchSize # 取batch数量个数据 if k >= n: k = 0 X, y = shuffleData(data) # 重新洗牌 theta = theta - alpha * grad # 参数更新 costs.append(cost(X, y, theta)) # 计算新的损失 i += 1 if stopType == STOP_ITER: value = i elif stopType == STOP_COST: value = costs elif stopType == STOP_GRAD: value = grad if stopCriterion(stopType, value, thresh): break return theta, i - 1, costs, grad, time.time() - init_time def runExpe(data, theta, batchSize, stopType, thresh, alpha): # import pdb # pdb.set_trace() theta, iter, costs, grad, dur = descent(data, theta, batchSize, stopType, thresh, alpha) name = "Original" if (data[:, 1] > 2).sum() > 1 else "Scaled" name += " data - learning rate: {} - ".format(alpha) if batchSize == n: strDescType = "Gradient" # 批量梯度下降 elif batchSize == 1: strDescType = "Stochastic" # 随机梯度下降 else: strDescType = "Mini-batch ({})".format(batchSize) # 小批量梯度下降 name += strDescType + " descent - Stop: " if stopType == STOP_ITER: strStop = "{} iterations".format(thresh) elif stopType == STOP_COST: strStop = "costs change < {}".format(thresh) else: strStop = "gradient norm < {}".format(thresh) name += strStop print("***{}\nTheta: {} - Iter: {} - Last cost: {:03.2f} - Duration: {:03.2f}s".format( name, theta, iter, costs[-1], dur)) fig, ax = plt.subplots(figsize=(12, 4)) ax.plot(np.arange(len(costs)), costs, 'r') ax.set_xlabel('Iterations') ax.set_ylabel('Cost') ax.set_title(name.upper() + ' - Error vs. Iteration') return theta path = 'data' + os.sep + 'LogiReg_data.txt' pdData = pd.read_csv(path, header=None, names=['Exam 1', 'Exam 2', 'Admitted']) positive = pdData[pdData['Admitted'] == 1] negative = pdData[pdData['Admitted'] == 0] # 画图观察样本情况 fig, ax = plt.subplots(figsize=(10, 5)) ax.scatter(positive['Exam 1'], positive['Exam 2'], s=30, c='b', marker='o', label='Admitted') ax.scatter(negative['Exam 1'], negative['Exam 2'], s=30, c='r', marker='x', label='Not Admitted') ax.legend() ax.set_xlabel('Exam 1 Score') ax.set_ylabel('Exam 2 Score') pdData.insert(0, 'Ones', 1) # 划分训练数据与标签 orig_data = pdData.values cols = orig_data.shape[1] X = orig_data[:, 0:cols - 1] y = orig_data[:, cols - 1:cols] # 设置初始参数0 theta = np.zeros([1, 3]) # 选择的梯度下降方法是基于所有样本的 n = 100 runExpe(orig_data, theta, n, STOP_ITER, thresh=5000, alpha=0.000001) runExpe(orig_data, theta, n, STOP_COST, thresh=0.000001, alpha=0.001) runExpe(orig_data, theta, n, STOP_GRAD, thresh=0.05, alpha=0.001) runExpe(orig_data, theta, 1, STOP_ITER, thresh=5000, alpha=0.001) runExpe(orig_data, theta, 1, STOP_ITER, thresh=15000, alpha=0.000002) runExpe(orig_data, theta, 16, STOP_ITER, thresh=15000, alpha=0.001) from sklearn import preprocessing as pp # 数据预处理 scaled_data = orig_data.copy() scaled_data[:, 1:3] = pp.scale(orig_data[:, 1:3]) runExpe(scaled_data, theta, n, STOP_ITER, thresh=5000, alpha=0.001) runExpe(scaled_data, theta, n, STOP_GRAD, thresh=0.02, alpha=0.001) theta = runExpe(scaled_data, theta, 1, STOP_GRAD, thresh=0.002 / 5, alpha=0.001) runExpe(scaled_data, theta, 16, STOP_GRAD, thresh=0.002 * 2, alpha=0.001) # 设定阈值 def predict(X, theta): return [1 if x >= 0.5 else 0 for x in model(X, theta)] # 计算精度 scaled_X = scaled_data[:, :3] y = scaled_data[:, 3] predictions = predict(scaled_X, theta) correct = [1 if ((a == 1 and b == 1) or (a == 0 and b == 0)) else 0 for (a, b) in zip(predictions, y)] accuracy = (sum(map(int, correct)) % len(correct)) print('accuracy = {0}%'.format(accuracy))
It is difficult to deal with the problem of data imbalance. For example: If we deal with a problem where positive and negative samples are very unbalanced, such as the ratio of positive and negative samples is 10000:1. If we predict all samples as positive, we can also make the value of the loss function smaller. But as a classifier, its ability to distinguish positive and negative samples will not be very good.
Processing nonlinear data is more troublesome. Logistic regression, without introducing other methods, can only handle linearly separable data, or further, handle binary classification problems.
Logistic regression itself cannot filter features. Sometimes, we use gbdt to filter features and then use logistic regression.
The above is the detailed content of How to implement gradient descent to solve logistic regression in python. For more information, please follow other related articles on the PHP Chinese website!