


How SpringBoot integrates RabbitMq custom message listening container to implement message batch processing
SpringBoot integrates RabbitMq custom message listening container to implement message batch processing
Preface
RabbitMQ is a commonly used message queue. Spring Boot has deeply integrated it and can quickly to realize the sending and receiving of messages. In RabbitMQ, the sending and receiving of messages are asynchronous, so a listener is needed to listen for the arrival of messages. Spring Boot provides a default listener container, but sometimes we need to customize the listener container to meet some special needs, such as obtaining data in batches.
In this article, we will use Spring Boot to integrate RabbitMQ and customize a listener container to achieve the function of obtaining data in batches.
Prerequisites:
Before you start, you need to have the following conditions:
The RabbitMQ server has been installed and started.
The queue to be used has been created.
Already familiar with the basic knowledge of Spring Boot and RabbitMQ.
Environment preparation:
Before starting, we need to prepare the following environment:
JDK 1.8 or Above version
Spring Boot 2.5.0 or above version
RabbitMQ 3.8.0 or above version
Add dependencies
First, add the following dependencies in the pom.xml file:
<dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-amqp</artifactId> </dependency>
Configuration file
Next, add the following configuration in the application.properties file :
spring.rabbitmq.host=localhost spring.rabbitmq.port=5672 spring.rabbitmq.username=guest spring.rabbitmq.password=guest spring.rabbitmq.virtual-host=/ # 队列名称 spring.rabbitmq.listener.simple.queue-name=myQueue # 最大并发消费者数量 spring.rabbitmq.listener.simple.concurrency=5 # 最小数量 spring.rabbitmq.listener.simple.min-concurrency=1 # 最大数量 spring.rabbitmq.listener.simple.max-concurrency=10 # 批量处理消息的大小 spring.rabbitmq.listener.simple.batch-size=50
or
spring: rabbitmq: host: localhost listener: simple: batch-size: 50 concurrency: 5 max-concurrency: 10 min-concurrency: 1 queue-name: myQueue password: guest port: 5672 username: guest virtual-host: /
Writing a listener
Then, we need to create a listener class in order to process the messages received from the queue. The following is a simple example:
@Component public class MyListener { @RabbitListener(queues = "myQueue", containerFactory = "myFactory") public void handleMessage(List<MyMessage> messages, Channel channel, @Header(AmqpHeaders.DELIVERY_TAG) long deliveryTag) throws IOException { try { // 处理消息 System.out.println("Received " + messages.size() + " messages"); for (Message message : messages) { // 处理消息 System.out.println("Received message: " + new String(message.getBody())); } channel.basicAck(messages.get(messages.size() - 1).getMessageProperties().getDeliveryTag(), true); } finally { // 手动确认消息 channel.basicAck(deliveryTag, true); } } }
In the above code, we use the @RabbitListener annotation to specify the name of the queue to listen to, and also specify the use of the myFactory factory to create the listening container. In this listener, we simply print the received message.
Create SimpleRabbitListenerContainerFactory
Next, we need to create a SimpleRabbitListenerContainerFactory factory to be able to customize the behavior of the listening container. Here is a simple example:
@Configuration public class RabbitMQConfig { // @Bean // public SimpleRabbitListenerContainerFactory myFactory(ConnectionFactory connectionFactory) { // SimpleRabbitListenerContainerFactory factory = new SimpleRabbitListenerContainerFactory(); // factory.setConnectionFactory(connectionFactory); // factory.setConcurrentConsumers(1); // factory.setMaxConcurrentConsumers(10); // factory.setBatchListener(true); // factory.setBatchSize(50); // return factory; // } @Bean public SimpleRabbitListenerContainerFactory myFactory( ConnectionFactory connectionFactory, PlatformTransactionManager transactionManager, MessageConverter messageConverter) { SimpleRabbitListenerContainerFactory factory = new SimpleRabbitListenerContainerFactory(); // 并发消费者数,默认为 1 factory.setConcurrentConsumers(5); // 最大并发消费者数,默认为 1 factory.setMaxConcurrentConsumers(10); // 拒绝未确认的消息并重新将它们放回队列,默认为 true factory.setDefaultRequeueRejected(false); // 容器启动时是否自动启动,默认为 true factory.setAutoStartup(true); // 消息确认模式,默认为 AUTO factory.setAcknowledgeMode(AcknowledgeMode.MANUAL); // 每个消费者在一次请求中预获取的消息数,默认为 1 factory.setPrefetchCount(5); // 从队列中接收消息的超时时间,默认为 0,表示没有超时限制 factory.setReceiveTimeout(1000); // 与容器一起使用的事务管理器。默认情况下,容器不会使用事务 factory.setTransactionManager(transactionManager); // 消息转换器,用于将接收到的消息转换为 Java 对象或将 Java 对象转换为消息 factory.setMessageConverter(messageConverter); // 用于异步消息处理的线程池。默认情况下,容器使用一个简单的 SimpleAsyncTaskExecutor factory.setTaskExecutor(new SimpleAsyncTaskExecutor()); // 在关闭容器时等待活动线程终止的时间,默认为 5000 毫秒 factory.setShutdownTimeout(10000); // 重试失败的消息之前等待的时间,默认为 5000 毫秒 factory.setRecoveryInterval(5000); // 如果消息处理器尝试监听不存在的队列,是否抛出异常。默认为 true factory.setMissingQueuesFatal(false); // 监听器容器连接工厂 factory.setConnectionFactory(connectionFactory); return factory; } }
Most of these properties are optional and can be set as needed. Depending on the application's needs, we are free to tune these properties to improve application performance and reliability.
Send Message
Finally, we can write a simple message sending code to send some messages to the queue. Here's a simple example:
@Component public class MySender { @Autowired private RabbitTemplate rabbitTemplate; public void sendMessage(String message) { for (int i = 0; i < 100; i++) { rabbitTemplate.convertAndSend("myQueue", "message:" + i); } } }
The above is the detailed content of How SpringBoot integrates RabbitMq custom message listening container to implement message batch processing. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

How to build a reliable messaging application with React and RabbitMQ Introduction: Modern applications need to support reliable messaging to achieve features such as real-time updates and data synchronization. React is a popular JavaScript library for building user interfaces, while RabbitMQ is a reliable messaging middleware. This article will introduce how to combine React and RabbitMQ to build a reliable messaging application, and provide specific code examples. RabbitMQ overview:

How to use RabbitMQ to implement distributed message processing in PHP Introduction: In large-scale application development, distributed systems have become a common requirement. Distributed message processing is a pattern that improves the efficiency and reliability of the system by distributing tasks to multiple processing nodes. RabbitMQ is an open source, reliable message queuing system that uses the AMQP protocol to implement message delivery and processing. In this article we will cover how to use RabbitMQ in PHP for distribution

SpringBoot and SpringMVC are both commonly used frameworks in Java development, but there are some obvious differences between them. This article will explore the features and uses of these two frameworks and compare their differences. First, let's learn about SpringBoot. SpringBoot was developed by the Pivotal team to simplify the creation and deployment of applications based on the Spring framework. It provides a fast, lightweight way to build stand-alone, executable

As modern applications increase in complexity, messaging has become a powerful tool. In this area, RabbitMQ has become a very popular message broker that can be used to deliver messages between different applications. In this article, we will explore how to use RabbitMQ in Go language. This guide will cover the following: Introduction to RabbitMQ RabbitMQ Installation RabbitMQ Basic Concepts Getting Started with RabbitMQ in Go RabbitMQ and Go

This article will write a detailed example to talk about the actual development of dubbo+nacos+Spring Boot. This article will not cover too much theoretical knowledge, but will write the simplest example to illustrate how dubbo can be integrated with nacos to quickly build a development environment.

Introduction to the solution for real-time data synchronization between Golang and RabbitMQ: In today's era, with the popularity of the Internet and the explosive growth of data volume, real-time data synchronization has become more and more important. In order to solve the problems of asynchronous data transmission and data synchronization, many companies have begun to use message queues to achieve real-time synchronization of data. This article will introduce a real-time data synchronization solution based on Golang and RabbitMQ, and provide specific code examples. 1. What is RabbitMQ? Rabbi

Now more and more companies are beginning to adopt the microservice architecture model, and in this architecture, message queues have become an important communication method, among which RabbitMQ is widely used. In the Go language, go-zero is a framework that has emerged in recent years. It provides many practical tools and methods to allow developers to use message queues more easily. Below we will introduce go-zero based on practical applications. And the usage and application practice of RabbitMQ. 1.RabbitMQ OverviewRabbit

GolangRabbitMQ: The architectural design and implementation of a highly available message queue system requires specific code examples. Introduction: With the continuous development of Internet technology and its wide application, message queues have become an indispensable part of modern software systems. As a tool to implement decoupling, asynchronous communication, fault-tolerant processing and other functions, message queue provides high availability and scalability support for distributed systems. As an efficient and concise programming language, Golang is widely used to build high-concurrency and high-performance systems.
