Table of Contents
1. Use pipreqs to generate requests.txt
2. Using pip
Home Backend Development Python Tutorial How to quickly generate requests.txt for this project in Python

How to quickly generate requests.txt for this project in Python

May 13, 2023 pm 01:55 PM
python

In Python projects, we usually need to use many third-party libraries to provide additional functions and tools. However, it is not a good practice to upload these libraries directly to the Git repository, because it will make the code base too bloated and difficult to manage. Additionally, sometimes you need to install specific versions of dependencies when deploying your application.

At this time, you can use the requirements.txt file to manage the dependencies required by the project. This file lists all the dependencies required by the project along with their version numbers, making it easy for others to install and run all the dependencies required for the project. Reading this file using the pip command automatically downloads and installs all listed dependencies, which greatly simplifies the project startup/deployment process.

Therefore, generating the requirements.txt file is very important for managing the dependencies of Python projects, which can ensure the reproducibility, portability and maintainability of the project.

How to quickly generate requests.txt for this project in Python

1. Use pipreqs to generate requests.txt

Open a terminal in the project root directory and run the following command to install pipreqs:

pip install pipreqs
Copy after login

Run the following command to generate the requirements.txt file:

pipreqs . --encoding=utf8 --force
Copy after login

Among them, . represents the current directory, –encoding=utf8 specifies the encoding as UTF-8, and the –force option forces overwriting of the existing requirements.txt document.

Wait until the execution is completed, and you can see the generated requirements.txt file in the project root directory.

How to quickly generate requests.txt for this project in Python

2. Using pip

To use pip to generate the requirements.txt file for the current Python project, please follow the steps below:

1. Make sure you have installed pip and virtual environment.

2. Open the terminal in the virtual environment and enter the root directory of the project.

3. Run the following command to generate a requirements.txt file containing all dependencies:

pip freeze > requirements.txt
Copy after login

After execution, you can Below you will see a text file named requirements.txt, which contains all dependencies and their version numbers.

How to quickly generate requests.txt for this project in Python

It should be noted that the pip freeze command will output all installed packages and their version information to the console. The requirements.txt file can be generated by writing the output results to a file using the redirection symbol >. However, this file may contain some unnecessary dependencies, such as libraries and test tools that come with the system. Therefore, when using the generated requirements.txt file, it is recommended to manually check and delete unnecessary dependencies to reduce the project size.
The following is the generated requirements.txt file. You can see that many unnecessary dependencies are generated

absl-py==1.0.0
addict==2.4.0
aiohttp==3.7.4.post0
alembic==1.8.1
argon2-cffi @ file:///opt/conda/conda-bld/argon2-cffi_1645000214183/work
argon2-cffi-bindings @ file:///C:/ci/argon2-cffi-bindings_1644569848815/work
astunparse==1.6.3
async-timeout==3.0.1
attrs @ file:///opt/conda/conda-bld/attrs_1642510447205/work
backcall @ file:///home/ktietz/src/ci/backcall_1611930011877/work
beautifulsoup4 @ file:///tmp/build/80754af9/beautifulsoup4_1631874778482/work
bilibili-api==5.1.2
bleach @ file:///opt/conda/conda-bld/bleach_1641577558959/work
blinker==1.5
cachetools==5.0.0
certifi @ file:///C:/b/abs_85o_6fm0se/croot/certifi_1671487778835/work/certifi
cffi @ file:///C:/ci_310/cffi_1642682485096/work
chardet==4.0.0
charset-normalizer==2.0.12
click @ file:///C:/ci/click_1646038601470/work
cloudpickle @ file:///tmp/build/80754af9/cloudpickle_1632508026186/work
colorama @ file:///tmp/build/80754af9/colorama_1607707115595/work
cryptography @ file:///C:/ci/cryptography_1652101770956/work
cycler==0.11.0
cytoolz==0.11.0
dask==1.1.4
debugpy @ file:///C:/ci/debugpy_1637091911212/work
decorator @ file:///opt/conda/conda-bld/decorator_1643638310831/work
defusedxml @ file:///tmp/build/80754af9/defusedxml_1615228127516/work
dnspython==2.3.0
docopt==0.6.2
einops==0.4.1
email-validator==1.3.1
entrypoints==0.3
fastjsonschema @ file:///tmp/build/80754af9/python-fastjsonschema_1620414857593/work/dist
Flask==2.2.3
Flask-Email==1.4.4
Flask-Mail==0.9.1
Flask-Migrate==3.1.0
Flask-Script==2.0.6
Flask-SQLAlchemy @ file:///tmp/build/80754af9/flask-sqlalchemy_1616180561581/work
Flask-WTF==1.1.1
flatbuffers==23.1.21
fonttools==4.30.0
fvcore==0.1.5.post20220305
gast==0.4.0
google-auth==2.6.5
google-auth-oauthlib==0.4.6
google-pasta==0.2.0
greenlet @ file:///C:/ci/greenlet_1628888257991/work
grpcio==1.45.0
grpcio-tools==1.45.0
h6py @ file:///C:/ci/h6py_1659089886851/work
idna==3.3
imagecodecs @ file:///C:/ci/imagecodecs_1635529223557/work
imageio @ file:///tmp/build/80754af9/imageio_1617700267927/work
importlib-metadata @ file:///C:/ci/importlib-metadata_1648562631189/work
importlib-resources==5.9.0
iopath==0.1.9
ipykernel @ file:///C:/ci/ipykernel_1647000985174/work/dist/ipykernel-6.9.1-py3-none-any.whl
ipython @ file:///C:/ci/ipython_1643800131373/work
ipython-genutils @ file:///tmp/build/80754af9/ipython_genutils_1606773439826/work
ipywidgets @ file:///tmp/build/80754af9/ipywidgets_1634143127070/work
itsdangerous @ file:///tmp/build/80754af9/itsdangerous_1621432558163/work
jedi @ file:///C:/ci/jedi_1644297241925/work
Jinja2 @ file:///C:/b/abs_7cdis66kl9/croot/jinja2_1666908141852/work
joblib @ file:///C:/b/abs_e60_bwl1v6/croot/joblib_1666298845728/work
jsonschema @ file:///Users/ktietz/demo/mc3/conda-bld/jsonschema_1630511932244/work
jupyter==1.0.0
jupyter-client @ file:///opt/conda/conda-bld/jupyter_client_1643638337975/work
jupyter-console @ file:///opt/conda/conda-bld/jupyter_console_1647002188872/work
jupyter-core @ file:///C:/ci/jupyter_core_1646976467633/work
jupyterlab-pygments @ file:///tmp/build/80754af9/jupyterlab_pygments_1601490720602/work
jupyterlab-widgets @ file:///tmp/build/80754af9/jupyterlab_widgets_1609884341231/work
keras==2.11.0
kiwisolver @ file:///C:/ci/kiwisolver_1653274189334/work
labelme==3.16.7
libclang==15.0.6.1
loguru @ file:///C:/ci/loguru_1643616607274/work
lxml==4.6.5
Mako==1.2.2
Markdown==3.3.6
MarkupSafe @ file:///C:/ci/markupsafe_1654508076077/work
matplotlib==3.5.1
matplotlib-inline @ file:///tmp/build/80754af9/matplotlib-inline_1628242447089/work
mistune @ file:///C:/ci/mistune_1594373272338/work
mkl-fft==1.3.1
mkl-random @ file:///C:/ci/mkl_random_1626186163140/work
mkl-service==2.4.0
mmcv==1.6.2
multidict==6.0.2
nbclient @ file:///tmp/build/80754af9/nbclient_1645431659072/work
nbconvert @ file:///C:/ci/nbconvert_1649759177374/work
nbformat @ file:///C:/ci/nbformat_1649845122517/work
nest-asyncio @ file:///C:/ci/nest-asyncio_1649848126026/work
networkx==2.2
notebook @ file:///C:/ci/notebook_1645002740769/work
numpy @ file:///C:/ci/numpy_and_numpy_base_1649782933444/work
oauthlib==3.2.0
opencv-python==4.5.5.64
openslide-python==1.2.0
opt-einsum==3.3.0
packaging @ file:///tmp/build/80754af9/packaging_1637314298585/work
pandas==1.3.5
pandocfilters @ file:///opt/conda/conda-bld/pandocfilters_1643405455980/work
parso @ file:///opt/conda/conda-bld/parso_1641458642106/work
pickleshare @ file:///tmp/build/80754af9/pickleshare_1606932040724/work
Pillow==9.0.1
pipreqs==0.4.11
portalocker==2.4.0
prettytable==3.3.0
prometheus-client @ file:///opt/conda/conda-bld/prometheus_client_1643788673601/work
prompt-toolkit @ file:///tmp/build/80754af9/prompt-toolkit_1633440160888/work
protobuf==3.19.6
pyasn1==0.4.8
pyasn1-modules==0.2.8
pycparser @ file:///tmp/build/80754af9/pycparser_1636541352034/work
pyecharts==1.9.1
pygame==2.2.0
Pygments @ file:///opt/conda/conda-bld/pygments_1644249106324/work
PyMySQL @ file:///C:/ci/pymysql_1610464946597/work
pyparsing==3.0.7
PyQt5-Qt5==5.15.2
PyQt5-sip==12.9.1
pyrsistent @ file:///C:/ci/pyrsistent_1636093257833/work
pytesseract==0.3.10
python-dateutil @ file:///tmp/build/80754af9/python-dateutil_1626374649649/work
pytz @ file:///C:/Windows/TEMP/abs_90eacd4e-8eff-491e-b26e-f707eba2cbe1ujvbhqz1/croots/recipe/pytz_1654762631027/work
PyWavelets @ file:///C:/ci/pywavelets_1648728036674/work
pywin32==302
pywinpty @ file:///C:/ci_310/pywinpty_1644230983541/work/target/wheels/pywinpty-2.0.2-cp37-none-win_amd64.whl
PyYAML==6.0
pyzmq @ file:///C:/ci/pyzmq_1638435182681/work
qtconsole @ file:///opt/conda/conda-bld/qtconsole_1649078897110/work
QtPy @ file:///opt/conda/conda-bld/qtpy_1649073884068/work
regex==2022.10.31
requests==2.27.1
requests-oauthlib==1.3.1
rsa==4.8
scikit-image @ file:///C:/ci/scikit-image_1648196140109/work
scikit-learn @ file:///C:/ci/scikit-learn_1642599122269/work
scipy @ file:///C:/ci/scipy_1641555141383/work
seaborn==0.11.2
Send2Trash @ file:///tmp/build/80754af9/send2trash_1632406701022/work
sip==4.19.13
six @ file:///tmp/build/80754af9/six_1644875935023/work
soupsieve @ file:///tmp/build/80754af9/soupsieve_1636706018808/work
SQLAlchemy @ file:///C:/Windows/Temp/abs_f8661157-660b-49bb-a790-69ab9f3b8f7c8a8s2psb/croots/recipe/sqlalchemy_1657867864564/work
tabulate==0.8.9
tensorboard==2.11.2
tensorboard-data-server==0.6.1
tensorboard-plugin-wit==1.8.1
tensorflow==2.11.0
tensorflow-estimator==2.11.0
tensorflow-intel==2.11.0
tensorflow-io-gcs-filesystem==0.31.0
termcolor==1.1.0
terminado @ file:///C:/ci/terminado_1644322782754/work
testpath @ file:///tmp/build/80754af9/testpath_1624638946665/work
thop==0.0.31.post2005241907
threadpoolctl @ file:///Users/ktietz/demo/mc3/conda-bld/threadpoolctl_1629802263681/work
tifffile @ file:///tmp/build/80754af9/tifffile_1627275862826/work
timm==0.6.7
toolz @ file:///tmp/build/80754af9/toolz_1636545406491/work
torch==1.9.1+cu102
torchaudio==0.9.1
torchmetrics==0.9.3
torchstat==0.0.7
torchvision==0.10.1+cu102
tornado @ file:///C:/ci/tornado_1606935947090/work
tqdm==4.63.0
traitlets @ file:///tmp/build/80754af9/traitlets_1636710298902/work
typing_extensions @ file:///opt/conda/conda-bld/typing_extensions_1647553014482/work
urllib3==1.26.9
wcwidth @ file:///Users/ktietz/demo/mc3/conda-bld/wcwidth_1629357192024/work
webencodings==0.5.1
Werkzeug==2.2.3
widgetsnbextension @ file:///C:/ci/widgetsnbextension_1645009553925/work
win32-setctime @ file:///home/tkoch/Workspace/win32_setctime/win32_setctime_1643630045199/work
wincertstore==0.2
wrapt==1.15.0
WTForms==3.0.1
xlwt==1.3.0
yacs==0.1.8
yapf==0.32.0
yarg==0.1.9
yarl==1.7.2
zipp @ file:///C:/ci/zipp_1652274072582/work
Copy after login

The above is the detailed content of How to quickly generate requests.txt for this project in Python. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

Can vs code run in Windows 8 Can vs code run in Windows 8 Apr 15, 2025 pm 07:24 PM

VS Code can run on Windows 8, but the experience may not be great. First make sure the system has been updated to the latest patch, then download the VS Code installation package that matches the system architecture and install it as prompted. After installation, be aware that some extensions may be incompatible with Windows 8 and need to look for alternative extensions or use newer Windows systems in a virtual machine. Install the necessary extensions to check whether they work properly. Although VS Code is feasible on Windows 8, it is recommended to upgrade to a newer Windows system for a better development experience and security.

How to run programs in terminal vscode How to run programs in terminal vscode Apr 15, 2025 pm 06:42 PM

In VS Code, you can run the program in the terminal through the following steps: Prepare the code and open the integrated terminal to ensure that the code directory is consistent with the terminal working directory. Select the run command according to the programming language (such as Python's python your_file_name.py) to check whether it runs successfully and resolve errors. Use the debugger to improve debugging efficiency.

Can visual studio code be used in python Can visual studio code be used in python Apr 15, 2025 pm 08:18 PM

VS Code can be used to write Python and provides many features that make it an ideal tool for developing Python applications. It allows users to: install Python extensions to get functions such as code completion, syntax highlighting, and debugging. Use the debugger to track code step by step, find and fix errors. Integrate Git for version control. Use code formatting tools to maintain code consistency. Use the Linting tool to spot potential problems ahead of time.

Is the vscode extension malicious? Is the vscode extension malicious? Apr 15, 2025 pm 07:57 PM

VS Code extensions pose malicious risks, such as hiding malicious code, exploiting vulnerabilities, and masturbating as legitimate extensions. Methods to identify malicious extensions include: checking publishers, reading comments, checking code, and installing with caution. Security measures also include: security awareness, good habits, regular updates and antivirus software.

Python: Automation, Scripting, and Task Management Python: Automation, Scripting, and Task Management Apr 16, 2025 am 12:14 AM

Python excels in automation, scripting, and task management. 1) Automation: File backup is realized through standard libraries such as os and shutil. 2) Script writing: Use the psutil library to monitor system resources. 3) Task management: Use the schedule library to schedule tasks. Python's ease of use and rich library support makes it the preferred tool in these areas.

What is vscode What is vscode for? What is vscode What is vscode for? Apr 15, 2025 pm 06:45 PM

VS Code is the full name Visual Studio Code, which is a free and open source cross-platform code editor and development environment developed by Microsoft. It supports a wide range of programming languages ​​and provides syntax highlighting, code automatic completion, code snippets and smart prompts to improve development efficiency. Through a rich extension ecosystem, users can add extensions to specific needs and languages, such as debuggers, code formatting tools, and Git integrations. VS Code also includes an intuitive debugger that helps quickly find and resolve bugs in your code.

Golang vs. Python: Concurrency and Multithreading Golang vs. Python: Concurrency and Multithreading Apr 17, 2025 am 12:20 AM

Golang is more suitable for high concurrency tasks, while Python has more advantages in flexibility. 1.Golang efficiently handles concurrency through goroutine and channel. 2. Python relies on threading and asyncio, which is affected by GIL, but provides multiple concurrency methods. The choice should be based on specific needs.

Can visual studio code run python Can visual studio code run python Apr 15, 2025 pm 08:00 PM

VS Code not only can run Python, but also provides powerful functions, including: automatically identifying Python files after installing Python extensions, providing functions such as code completion, syntax highlighting, and debugging. Relying on the installed Python environment, extensions act as bridge connection editing and Python environment. The debugging functions include setting breakpoints, step-by-step debugging, viewing variable values, and improving debugging efficiency. The integrated terminal supports running complex commands such as unit testing and package management. Supports extended configuration and enhances features such as code formatting, analysis and version control.

See all articles