Example analysis of how Java creates threads
Inherit Thread, use anonymous inner class here
@Slf4j(topic = "c.Test1") public class Test1 { public static void main(String[] args) { //创建线程对象 Thread t = new Thread(){ @Override public void run() { //要执行的任务 log.debug("running"); } }; //设置线程的名字 t.setName("t1"); //启动线程 t.start(); log.debug("running"); } } /* 19:44:31.998 [main] DEBUG c.Test1 - running 19:44:31.998 [t1] DEBUG c.Test1 - running */
implement Runnable interface, cooperate with Thread class, also use anonymous inner class
separate threads and tasks
Thread represents the thread
Runnable represents the runnable task
@Slf4j(topic = "c.Test2") public class Test2 { public static void main(String[] args) { Runnable runnable = new Runnable() { @Override public void run() { //要执行的任务 log.debug("running"); } }; //创建线程对象 Thread t = new Thread(runnable, "t2"); //启动线程 t.start(); } } //19:52:27.646 [t2] DEBUG c.Test2 - running
In javajava, there is @ The FunctionalInterface@FunctionalInterface annotation means that the interface has only one abstract method, which can be simplified by lambdalambda expression
@Slf4j(topic = "c.Test2") public class Test2 { public static void main(String[] args) { Runnable runnable = () -> { //要执行的任务 log.debug("running"); }; //创建线程对象 Thread t = new Thread(runnable, "t2"); //启动线程 t.start(); } }
FutureTask with Thread
Because FutureTask can interface a Callable type parameter, used Handling situations with return values
@Slf4j(topic = "c.Test3") public class Test3 { public static void main(String[] args) throws ExecutionException, InterruptedException { //创建任务对象 FutureTask<Integer> task = new FutureTask<>(() -> { log.debug("running"); Thread.sleep(1000); return 100; }); /* 用lambda化简前 */ FutureTask<Integer> task1 = new FutureTask<>(new Callable<Integer>() { @Override public Integer call() throws Exception { log.debug("running"); Thread.sleep(1000); return 100; } }); //参数1是任务的对象, 参数2是线程的名字 Thread t = new Thread(task, "t3"); t.run(); //主线程堵塞,同步等待task执行完毕的结果 Integer integer = task.get(); log.debug("结果是:{}", integer); } }
The above is the detailed content of Example analysis of how Java creates threads. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics



Guide to Perfect Number in Java. Here we discuss the Definition, How to check Perfect number in Java?, examples with code implementation.

Guide to Random Number Generator in Java. Here we discuss Functions in Java with examples and two different Generators with ther examples.

Guide to Weka in Java. Here we discuss the Introduction, how to use weka java, the type of platform, and advantages with examples.

Guide to Smith Number in Java. Here we discuss the Definition, How to check smith number in Java? example with code implementation.

In this article, we have kept the most asked Java Spring Interview Questions with their detailed answers. So that you can crack the interview.

Java 8 introduces the Stream API, providing a powerful and expressive way to process data collections. However, a common question when using Stream is: How to break or return from a forEach operation? Traditional loops allow for early interruption or return, but Stream's forEach method does not directly support this method. This article will explain the reasons and explore alternative methods for implementing premature termination in Stream processing systems. Further reading: Java Stream API improvements Understand Stream forEach The forEach method is a terminal operation that performs one operation on each element in the Stream. Its design intention is

Guide to TimeStamp to Date in Java. Here we also discuss the introduction and how to convert timestamp to date in java along with examples.

Capsules are three-dimensional geometric figures, composed of a cylinder and a hemisphere at both ends. The volume of the capsule can be calculated by adding the volume of the cylinder and the volume of the hemisphere at both ends. This tutorial will discuss how to calculate the volume of a given capsule in Java using different methods. Capsule volume formula The formula for capsule volume is as follows: Capsule volume = Cylindrical volume Volume Two hemisphere volume in, r: The radius of the hemisphere. h: The height of the cylinder (excluding the hemisphere). Example 1 enter Radius = 5 units Height = 10 units Output Volume = 1570.8 cubic units explain Calculate volume using formula: Volume = π × r2 × h (4
