


How Python uses the Beautiful Soup (BS4) library to parse HTML and XML
1. Overview of Beautiful Soup:
Beautiful Soup supports Python libraries that extract data from HTML or XML files;
It supports the HTML parser in the Python standard library, and also supports some Third-party parser lxml.
Beautiful Soup automatically converts input documents to Unicode encoding and output documents to UTF-8 encoding.
Installation:
pip install beautifulsoup4
Optional to install the parser
pip install lxml
pip install html5lib
<!DOCTYPE html> <html> <head> <meta content="text/html;charset=utf-8" http-equiv="content-type" /> <meta content="IE=Edge" http-equiv="X-UA-Compatible" /> <meta content="always" name="referrer" /> <link href="https://ss1.bdstatic.com/5eN1bjq8AAUYm2zgoY3K/r/www/cache/bdorz/baidu.min.css" rel="external nofollow" rel="stylesheet" type="text/css" /> <title>百度一下,你就知道 </title> </head> <body link="#0000cc"> <div id="wrapper"> <div id="head"> <div class="head_wrapper"> <div id="u1"> <a class="mnav" href="http://news.baidu.com" rel="external nofollow" name="tj_trnews">新闻 </a> <a class="mnav" href="https://www.hao123.com" rel="external nofollow" name="tj_trhao123">hao123 </a> <a class="mnav" href="http://map.baidu.com" rel="external nofollow" name="tj_trmap">地图 </a> <a class="mnav" href="http://v.baidu.com" rel="external nofollow" name="tj_trvideo">视频 </a> <a class="mnav" href="http://tieba.baidu.com" rel="external nofollow" rel="external nofollow" name="tj_trtieba">贴吧 </a> <a class="bri" href="//www.baidu.com/more/" rel="external nofollow" name="tj_briicon" >更多产品 </a> </div> </div> </div> </div> </body> </html>
from bs4 import BeautifulSoup file = open('./aa.html', 'rb') html = file.read() bs = BeautifulSoup(html, "html.parser") # 缩进格式 print(bs.prettify()) # 格式化html结构 print(bs.title) # print(bs.title.name) # 获取title标签的名称 :title print(bs.title.string) # 获取title标签的文本内容 : 百度一下,你就知道 print(bs.head) # 获取head标签的所有内容 : print(bs.div) # 获取第一个div标签中的所有内容 : print(bs.div["id"]) # 获取第一个div标签的id的值 : wrapper print(bs.a) # 获取第一个a标签中的所有内容 : <a href="http://news.baidu.com/" rel="external nofollow" target="_blank">新闻 </a> print(bs.find_all("a")) # 获取所有的a标签中的所有内容 : [....] print(bs.find(id="u1")) # 获取id="u1"的所有内容 : for item in bs.find_all("a"): # 获取所有的a标签,并遍历打印a标签中的href的值 : print(item.get("href")) for item in bs.find_all("a"): # 获取所有的a标签,并遍历打印a标签的文本值: print(item.get_text())
## In layman's terms, #Tag is a tag in HTML, for example:
print(bs.title) # 获取title标签的所有内容 print(bs.head) # 获取head标签的所有内容 print(bs.a) # 获取第一个a标签的所有内容 print(type(bs.a))# 类型
We can use soup to add the tag name to easily obtain the content of these tags. The type of these objects is bs4.element.Tag. But note that it looks for the first matching tag in all content.
For Tag, it has
two important attributes, name and attrs:print(bs.name) # [document] #bs 对象本身比较特殊,它的 name 即为 [document]
print(bs.head.name) # head #对于其他内部标签,输出的值便为标签本身的名称
print(bs.a.attrs) # 在这里,我们把 a 标签的所有属性打印输出了出来,得到的类型是一个字典。
print(bs.a['class']) ##还可以利用get方法,传入属性的名称,二者是等价的,等价 bs.a.get('class')
bs.a['class'] = "newClass"# 可以对这些属性和内容等等进行修改
print(bs.a)
del bs.a['class'] # 还可以对这个属性进行删除
print(bs.a)
Since We have got the content of the label, so the question is, what should we do if we want to get the text inside the label? It's very simple, just use .string, for example:
print(bs.title.string) # 百度一下,你就知道 print(type(bs.title.string)) #
3. BeautifulSoup: the content of the document
The BeautifulSoup object represents the content of a document. Most of the time, it can be regarded as a Tag object, which is a special Tag. We can obtain its type, name, and attributes respectively, for example:
print(type(bs.name)) # print(bs.name) # [document] print(bs.attrs) # {}
4. Comment: Comment
## The #Comment object is a special type of NavigableString object, and its output content does not include comment symbols.print(bs.a)
# 此时不能出现空格和换行符,a标签如下:
#
print(bs.a.string) # 新闻
print(type(bs.a.string)) #
Copy after login
4. Properties used to traverse the document treeprint(bs.a) # 此时不能出现空格和换行符,a标签如下: # print(bs.a.string) # 新闻 print(type(bs.a.string)) #
- .contents:
- Get all child nodes of Tag and return a list
print(bs.head.contents) # tag的.contents属性可以将tag的子节点以列表的方式输出:[...] print(bs.head.contents[1]) # 用列表索引来获取它的某一个元素:
Copy after login
- children:
- Get all child nodes of Tag and return a generator
for child in bs.body.children: print(child)
Copy after login
- .descendants
- : Get all descendant nodes of Tag
##.parent
: Get the parent node of Tag .previous_sibling
: Get the current Tag's previous node, the attribute is usually a string or blank, the actual result is the comma and newline character between the current tag and the previous tag ##.next_sibling
: Get the next node of the current Tag. The attribute is usually a string or blank. The result is the comma and newline character between the current tag and the next tag..previous_siblings
: Get all the sibling nodes above the current Tag and return a generator.next_siblings
: Get all the sibling nodes below the current Tag , returns a generator.previous_element
: Gets the last parsed object (string or tag) during the parsing process, which may be the same as previous_sibling, but usually It’s different.next_element
: Gets the next parsed object (string or tag) during the parsing process, which may be the same as next_sibling, but usually Different.previous_elements
: Returns a generator that can forward access the parsed content of the document.next_elements
: Returns a generator that can access the parsed content of the document backwards.strings
: If Tag contains multiple strings, That is, there is content in the descendant nodes, you can use this to obtain, and then traverse.stripped_strings
: The usage is the same as strings, except that the redundant ones can be removed Blank content.has_attr:
Judge whether Tag contains attributes5. Search document tree
1. find_all(): filter
find_all(name, attrs, recursive, text, **kwargs):
find_all filter can be used in tag In the name, the attributes of the node, etc. (1) name parameter:
String filtering
: Will find content that exactly matches the stringa_list = bs.find_all("a")
print(a_list)
Copy after login
a_list = bs.find_all("a") print(a_list)
Regular expression Filtering: If a regular expression is passed in, BeautifulSoup4 will match the content through search()
import re t_list = bs.find_all(re.compile("a")) for item in t_list: print(item)
List: If a list is passed in, BeautifulSoup4 will match the list The node matched by any element in returns
t_list = bs.find_all(["meta","link"]) for item in t_list: print(item)
Method: Pass in a method and match based on the method.
def name_is_exists(tag): return tag.has_attr("name") t_list = bs.find_all(name_is_exists) for item in t_list: print(item)
(2)kwargs参数:
t_list = bs.find_all(id="head") # 查询id=head的Tag t_list = bs.find_all(href=re.compile(http://news.baidu.com)) # 查询href属性包含ss1.bdstatic.com的Tag t_list = bs.find_all(class_=True) # 查询所有包含class的Tag(注意:class在Python中属于关键字,所以加_以示区别) for item in t_list: print(item)
(3)attrs参数:
并不是所有的属性都可以使用上面这种方式进行搜索,比如HTML的data-*属性:
t_list = bs.find_all(data-foo="value")
如果执行这段代码,将会报错。我们可以使用attrs参数,定义一个字典来搜索包含特殊属性的tag:
t_list = bs.find_all(attrs={"data-foo":"value"}) for item in t_list: print(item)
(4)text参数:
通过text参数可以搜索文档中的字符串内容,与name参数的可选值一样,text参数接受 字符串,正则表达式,列表
t_list = bs.find_all(text="hao123") t_list = bs.find_all(text=["hao123", "地图", "贴吧"]) t_list = bs.find_all(text=re.compile("\d"))
当我们搜索text中的一些特殊属性时,同样也可以传入一个方法来达到我们的目的:
def length_is_two(text): return text and len(text) == 2 t_list = bs.find_all(text=length_is_two)
(5)limit参数:
可以传入一个limit参数来限制返回的数量,当搜索出的数据量为5,而设置了limit=2时,此时只会返回前2个数据
t_list = bs.find_all("a",limit=2)
find_all除了上面一些常规的写法,还可以对其进行一些简写:
# 下面两者是相等的 t_list = bs.find_all("a") t_list = bs("a") # 下面两者是相等的 t_list = bs.a.find_all(text="新闻") t_list = bs.a(text="新闻")
2、find()
find()将返回符合条件的第一个Tag,有时我们只需要或一个Tag时,我们就可以用到find()方法了。当然了,也可以使用find_all()方法,传入一个limit=1,然后再取出第一个值也是可以的,不过未免繁琐。
t_list = bs.find_all("title",limit=1) # 返回只有一个结果的列表 t = bs.find("title") # 返回唯一值 t = bs.find("abc") # 如果没有找到,则返回None
从结果可以看出find_all,尽管传入了limit=1,但是返回值仍然为一个列表,当我们只需要取一个值时,远不如find方法方便。但是如果未搜索到值时,将返回一个None。
在上面介绍BeautifulSoup4的时候,我们知道可以通过bs.div来获取第一个div标签,如果我们需要获取第一个div下的第一个div,我们可以这样:
t = bs.div.div # 等价于 t = bs.find("div").find("div")
六、CSS选择器:select()方法
BeautifulSoup支持部分的CSS选择器,在Tag获取BeautifulSoup对象的.select()方法中传入字符串参数,即可使用CSS选择器的语法找到Tag:
print(bs.select('title')) # 1、通过标签名查找 print(bs.select('a')) print(bs.select('.mnav')) # 2、通过类名查找 print(bs.select('#u1')) # 3、通过id查找 print(bs.select('div .bri')) # 4、组合查找 print(bs.select('a[class="bri"]')) # 5、属性查找 print(bs.select('a[href="http://tieba.baidu.com" rel="external nofollow" rel="external nofollow" ]')) print(bs.select("head > title")) # 6、直接子标签查找 print(bs.select(".mnav ~ .bri")) # 7、兄弟节点标签查找 print(bs.select('title')[0].get_text()) # 8、获取内容
七、综合实例:
from bs4 import BeautifulSoup import requests,re req_obj = requests.get('https://www.baidu.com') soup = BeautifulSoup(req_obj.text,'lxml') '''标签查找''' print(soup.title) #只是查找出第一个 print(soup.find('title')) #效果和上面一样 print(soup.find_all('div')) #查出所有的div标签 '''获取标签里的属性''' tag = soup.div print(tag['class']) #多属性的话,会返回一个列表 print(tag['id']) #查找标签的id属性 print(tag.attrs) #查找标签所有的属性,返回一个字典(属性名:属性值) '''标签包的字符串''' tag = soup.title print(tag.string) #获取标签里的字符串 tag.string.replace_with("哈哈") #字符串不能直接编辑,可以替换 '''子节点的操作''' tag = soup.head print(tag.title) #获取head标签后再获取它包含的子标签 '''contents 和 .children''' tag = soup.body print(tag.contents) #将标签的子节点以列表返回 print([child for child in tag.children]) #输出和上面一样 '''descendants''' tag = soup.body [print(child_tag) for child_tag in tag.descendants] #获取所有子节点和子子节点 '''strings和.stripped_strings''' tag = soup.body [print(str) for str in tag.strings] #输出所有所有文本内容 [print(str) for str in tag.stripped_strings] #输出所有所有文本内容,去除空格或空行 '''.parent和.parents''' tag = soup.title print(tag.parent) #输出便签的父标签 [print(parent) for parent in tag.parents] #输出所有的父标签 '''.next_siblings 和 .previous_siblings 查出所有的兄弟节点 ''' '''.next_element 和 .previous_element 下一个兄弟节点 ''' '''find_all的keyword 参数''' soup.find_all(id='link2') #查找所有包含 id 属性的标签 soup.find_all(href=re.compile("elsie")) #href 参数,Beautiful Soup会搜索每个标签的href属性: soup.find_all(id=True) #找出所有的有id属性的标签 soup.find_all(href=re.compile("elsie"), id='link1') #也可以组合查找 soup.find_all(attrs={"属性名": "属性值"}) #也可以通过字典的方式查找
八、BeautifulSoup 和lxml(Xpath)对比
# test.py # -*- coding: utf-8 -*- import requests from bs4 import BeautifulSoup, SoupStrainer import traceback import json from lxml import etree import re import time def getHtmlText(url): try: r = requests.get(url, headers=headers) r.raise_for_status() if r.encoding == 'ISO-8859-1': r.encoding = r.apparent_encoding return r.text except: traceback.print_exc() # ----------使用BeautifulSoup解析------------------------ def parseWithBeautifulSoup(html_text): soup = BeautifulSoup(html_text, 'lxml') content = [] for mulu in soup.find_all(class_='mulu'): # 先找到所有的 div class=mulu 标记 # 找到div_h3 标记 h3 = mulu.find('h3') if h3 != None: h3_title = h3.string # 获取标题 lst = [] for a in mulu.select('div.box a'): href = a.get('href') # 找到 href 属性 box_title = a.get('title') # 找到 title 属性 pattern = re.compile(r'\s*\[(.*)\]\s+(.*)') # (re) 匹配括号内的表达式,也表示一个组 match = pattern.search(box_title) if match != None: date = match.group(1) real_title = match.group(2) lst.append({'href':href,'title':real_title,'date':date}) content.append({'title':h3_title,'content':lst}) with open('dmbj_bs.json', 'w') as fp: json.dump(content, fp=fp, indent=4) # ----------使用Xpath解析------------------------ def parseWithXpath(html_text): html = etree.HTML(html_text) content = [] for div_mulu in html.xpath('.//*[@class="mulu"]'): # 先找到所有的 div class=mulu 标记 # 找到所有的 div_h3 标记 div_h3 = div_mulu.xpath('./div[@class="mulu-title"]/center/h3/text()') if len(div_h3) > 0: h3_title = div_h3[0] # 获取标题 a_s = div_mulu.xpath('./div[@class="box"]/ul/li/a') lst = [] for a in a_s: href = a.xpath('./@href')[0] # 找到 href 属性 box_title = a.xpath('./@title')[0] # 找到 title 属性 pattern = re.compile(r'\s*\[(.*)\]\s+(.*)') # (re) 匹配括号内的表达式,也表示一个组 match = pattern.search(box_title) if match != None: date = match.group(1) real_title = match.group(2) lst.append({'href':href,'title':real_title,'date':date}) content.append({'title':h3_title,'content':lst}) with open('dmbj_xp.json', 'w') as fp: json.dump(content, fp=fp, indent=4) def main(): html_text = getHtmlText('http://www.seputu.com') print(len(html_text)) start = time.clock() parseWithBeautifulSoup(html_text) print('BSoup cost:', time.clock()-start) start = time.clock() parseWithXpath(html_text) print('Xpath cost:', time.clock()-start) if __name__ == '__main__': user_agent = 'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/66.0.3359.117 Safari/537.36' headers={'User-Agent': user_agent} main()
The above is the detailed content of How Python uses the Beautiful Soup (BS4) library to parse HTML and XML. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

To generate images through XML, you need to use graph libraries (such as Pillow and JFreeChart) as bridges to generate images based on metadata (size, color) in XML. The key to controlling the size of the image is to adjust the values of the <width> and <height> tags in XML. However, in practical applications, the complexity of XML structure, the fineness of graph drawing, the speed of image generation and memory consumption, and the selection of image formats all have an impact on the generated image size. Therefore, it is necessary to have a deep understanding of XML structure, proficient in the graphics library, and consider factors such as optimization algorithms and image format selection.

The speed of mobile XML to PDF depends on the following factors: the complexity of XML structure. Mobile hardware configuration conversion method (library, algorithm) code quality optimization methods (select efficient libraries, optimize algorithms, cache data, and utilize multi-threading). Overall, there is no absolute answer and it needs to be optimized according to the specific situation.

An application that converts XML directly to PDF cannot be found because they are two fundamentally different formats. XML is used to store data, while PDF is used to display documents. To complete the transformation, you can use programming languages and libraries such as Python and ReportLab to parse XML data and generate PDF documents.

Use most text editors to open XML files; if you need a more intuitive tree display, you can use an XML editor, such as Oxygen XML Editor or XMLSpy; if you process XML data in a program, you need to use a programming language (such as Python) and XML libraries (such as xml.etree.ElementTree) to parse.

There is no APP that can convert all XML files into PDFs because the XML structure is flexible and diverse. The core of XML to PDF is to convert the data structure into a page layout, which requires parsing XML and generating PDF. Common methods include parsing XML using Python libraries such as ElementTree and generating PDFs using ReportLab library. For complex XML, it may be necessary to use XSLT transformation structures. When optimizing performance, consider using multithreaded or multiprocesses and select the appropriate library.

It is impossible to complete XML to PDF conversion directly on your phone with a single application. It is necessary to use cloud services, which can be achieved through two steps: 1. Convert XML to PDF in the cloud, 2. Access or download the converted PDF file on the mobile phone.

XML formatting tools can type code according to rules to improve readability and understanding. When selecting a tool, pay attention to customization capabilities, handling of special circumstances, performance and ease of use. Commonly used tool types include online tools, IDE plug-ins, and command-line tools.

There is no built-in sum function in C language, so it needs to be written by yourself. Sum can be achieved by traversing the array and accumulating elements: Loop version: Sum is calculated using for loop and array length. Pointer version: Use pointers to point to array elements, and efficient summing is achieved through self-increment pointers. Dynamically allocate array version: Dynamically allocate arrays and manage memory yourself, ensuring that allocated memory is freed to prevent memory leaks.
