


Google and MIT's 'Iterative Joint Certification” video question and answer model: SOTA performance, using 80% less computing power
Video is a ubiquitous source of media content that touches many aspects of people’s daily lives. An increasing number of real-world video applications, such as video subtitling, content analysis, and video question answering (VideoQA), rely on models that can connect video content to text or natural language.
Among them, the video question and answer model is particularly challenging because it requires simultaneous grasp of semantic information, such as targets in the scene, and temporal information, such as how things move and interact. Both types of information must be placed in the context of a natural language question with a specific intent. Additionally, since videos have many frames, processing all of them to learn spatiotemporal information may be computationally prohibitive.
Paper link: https://arxiv.org/pdf/2208.00934.pdf For To solve this problem, in the article "Video Question Answering with Iterative Video-Text Co-Tokenization", researchers from Google and MIT introduced a new method of video-text learning, called "Iterative Co-Tokenization", which can effectively Fusion of spatial, temporal and linguistic information for information processing in video question answering.
This method is multi-stream, using independent backbone models to handle different scales Video, produces video representations that capture different features, such as high spatial resolution or long duration videos. The model applies the "co-authentication" module to learn effective representations from the fusion of video streams and text. The model is very computationally efficient, requiring only 67 GFLOPs, which is at least 50% lower than the previous method, and has better performance than other SOTA models.
Video-Text Iteration
The main goal of this model is to generate features from video and text (i.e. user questions) that together allow their corresponding inputs to interact. The second goal is to do this in an efficient way, which is very important for videos since they contain tens to hundreds of frames of input.
The model learns to label joint video-language input into smaller sets of labels to jointly and efficiently represent both modalities. When tokenizing, researchers use both modes to produce a joint compact representation, which is fed into a transformation layer to produce the next-level representation.
A challenge here, which is also a typical problem in cross-modal learning, is that video frames often do not directly correspond to related text. The researchers solved this problem by adding two learnable linear layers to unify the visual and textual feature dimensions before tokenization. This allowed the researchers to have both video and text condition how video tags were learned.
Furthermore, a single tokenization step does not allow further interaction between the two modes. To do this, the researchers use this new feature representation to interact with the video input features and produce another set of tokenized features, which are then fed into the next transformer layer. This iterative process creates new features or markers that represent the continuous improvement of the joint representation of the two modes. Finally, these features are fed into a decoder that generates text output.
As is common practice in video quality assessment, the researchers fine-tuned the model before fine-tuning it on individual video quality assessment datasets. Do pre-training. In this work, the researchers automatically annotated videos with text based on speech recognition, using the HowTo100M dataset instead of pre-training on the large VideoQA dataset. This weaker pre-training data still enabled the researchers' model to learn video-text features.
Implementation of efficient video question answering
The researchers applied the video language iterative co-authentication algorithm to three major VideoQA benchmarks, MSRVTT-QA, MSVD-QA and IVQA , and demonstrate that this approach achieves better results than other state-of-the-art models without making the model too large. In addition, iterative co-label learning also requires lower computing power on video-text learning tasks.
This model only uses 67GFLOPS computing power, which is the computing power required for 3D-ResNet video model and text (360GFLOPS ), which is more than twice as efficient as the X3D model. and generates highly accurate results, exceeding state-of-the-art methods.
Multi-stream video input
For VideoQA or some other tasks involving video input, researchers found that multi-stream input is more accurate for answering questions about spatial and temporal relationships The question is very important.
The researchers utilized three video streams of different resolutions and frame rates: a low-resolution, high-frame-rate input video stream (32 frames per second, spatial resolution 64x64, denoted as 32x64x64); a high-resolution, low-frame-rate video (8x224x224); and one in between (16x112x112).
Although there is obviously more information to process with three data streams, a very efficient model is obtained due to the iterative co-labeling method. At the same time, these additional data streams allow the most relevant information to be extracted.
For example, as shown below, questions related to a specific activity will produce higher activations in a video input with a lower resolution but a higher frame rate than with a general activity Related questions can be answered from high-resolution inputs with few frames.
Another benefit of this algorithm is that the tokenization will be based on the question asked. Different and changed.
Conclusion
The researchers proposed a new video language learning method that focuses on joint learning across video-text modalities. Researchers tackle the important and challenging task of video question answering. The researchers' approach is efficient and accurate, outperforming current state-of-the-art models despite being more efficient.
The Google researchers' approach has a modest model size and could gain further performance improvements with larger models and data. The researchers hope this work will spark more research in visual language learning to enable more seamless interactions with visual-based media.
The above is the detailed content of Google and MIT's 'Iterative Joint Certification” video question and answer model: SOTA performance, using 80% less computing power. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics



Imagine an artificial intelligence model that not only has the ability to surpass traditional computing, but also achieves more efficient performance at a lower cost. This is not science fiction, DeepSeek-V2[1], the world’s most powerful open source MoE model is here. DeepSeek-V2 is a powerful mixture of experts (MoE) language model with the characteristics of economical training and efficient inference. It consists of 236B parameters, 21B of which are used to activate each marker. Compared with DeepSeek67B, DeepSeek-V2 has stronger performance, while saving 42.5% of training costs, reducing KV cache by 93.3%, and increasing the maximum generation throughput to 5.76 times. DeepSeek is a company exploring general artificial intelligence

AI is indeed changing mathematics. Recently, Tao Zhexuan, who has been paying close attention to this issue, forwarded the latest issue of "Bulletin of the American Mathematical Society" (Bulletin of the American Mathematical Society). Focusing on the topic "Will machines change mathematics?", many mathematicians expressed their opinions. The whole process was full of sparks, hardcore and exciting. The author has a strong lineup, including Fields Medal winner Akshay Venkatesh, Chinese mathematician Zheng Lejun, NYU computer scientist Ernest Davis and many other well-known scholars in the industry. The world of AI has changed dramatically. You know, many of these articles were submitted a year ago.

The performance of JAX, promoted by Google, has surpassed that of Pytorch and TensorFlow in recent benchmark tests, ranking first in 7 indicators. And the test was not done on the TPU with the best JAX performance. Although among developers, Pytorch is still more popular than Tensorflow. But in the future, perhaps more large models will be trained and run based on the JAX platform. Models Recently, the Keras team benchmarked three backends (TensorFlow, JAX, PyTorch) with the native PyTorch implementation and Keras2 with TensorFlow. First, they select a set of mainstream

Boston Dynamics Atlas officially enters the era of electric robots! Yesterday, the hydraulic Atlas just "tearfully" withdrew from the stage of history. Today, Boston Dynamics announced that the electric Atlas is on the job. It seems that in the field of commercial humanoid robots, Boston Dynamics is determined to compete with Tesla. After the new video was released, it had already been viewed by more than one million people in just ten hours. The old people leave and new roles appear. This is a historical necessity. There is no doubt that this year is the explosive year of humanoid robots. Netizens commented: The advancement of robots has made this year's opening ceremony look like a human, and the degree of freedom is far greater than that of humans. But is this really not a horror movie? At the beginning of the video, Atlas is lying calmly on the ground, seemingly on his back. What follows is jaw-dropping

Earlier this month, researchers from MIT and other institutions proposed a very promising alternative to MLP - KAN. KAN outperforms MLP in terms of accuracy and interpretability. And it can outperform MLP running with a larger number of parameters with a very small number of parameters. For example, the authors stated that they used KAN to reproduce DeepMind's results with a smaller network and a higher degree of automation. Specifically, DeepMind's MLP has about 300,000 parameters, while KAN only has about 200 parameters. KAN has a strong mathematical foundation like MLP. MLP is based on the universal approximation theorem, while KAN is based on the Kolmogorov-Arnold representation theorem. As shown in the figure below, KAN has

The latest video of Tesla's robot Optimus is released, and it can already work in the factory. At normal speed, it sorts batteries (Tesla's 4680 batteries) like this: The official also released what it looks like at 20x speed - on a small "workstation", picking and picking and picking: This time it is released One of the highlights of the video is that Optimus completes this work in the factory, completely autonomously, without human intervention throughout the process. And from the perspective of Optimus, it can also pick up and place the crooked battery, focusing on automatic error correction: Regarding Optimus's hand, NVIDIA scientist Jim Fan gave a high evaluation: Optimus's hand is the world's five-fingered robot. One of the most dexterous. Its hands are not only tactile

Target detection is a relatively mature problem in autonomous driving systems, among which pedestrian detection is one of the earliest algorithms to be deployed. Very comprehensive research has been carried out in most papers. However, distance perception using fisheye cameras for surround view is relatively less studied. Due to large radial distortion, standard bounding box representation is difficult to implement in fisheye cameras. To alleviate the above description, we explore extended bounding box, ellipse, and general polygon designs into polar/angular representations and define an instance segmentation mIOU metric to analyze these representations. The proposed model fisheyeDetNet with polygonal shape outperforms other models and simultaneously achieves 49.5% mAP on the Valeo fisheye camera dataset for autonomous driving

This paper explores the problem of accurately detecting objects from different viewing angles (such as perspective and bird's-eye view) in autonomous driving, especially how to effectively transform features from perspective (PV) to bird's-eye view (BEV) space. Transformation is implemented via the Visual Transformation (VT) module. Existing methods are broadly divided into two strategies: 2D to 3D and 3D to 2D conversion. 2D-to-3D methods improve dense 2D features by predicting depth probabilities, but the inherent uncertainty of depth predictions, especially in distant regions, may introduce inaccuracies. While 3D to 2D methods usually use 3D queries to sample 2D features and learn the attention weights of the correspondence between 3D and 2D features through a Transformer, which increases the computational and deployment time.
