Table of Contents
Causing AI Bias What are human and systemic biases?
What is the socio-technical perspective recommended by NIST?
Home Technology peripherals AI NIST: AI bias goes far beyond the data itself

NIST: AI bias goes far beyond the data itself

May 17, 2023 pm 11:10 PM
AI data ml

By now, no one should dispute that most artificial intelligence is built on and currently uses biases that are problematic in some way. This is a challenge that has been observed and proven hundreds of times. The challenge for organizations is to root out AI bias, rather than just settling for better, unbiased data.

NIST: AI bias goes far beyond the data itself

In a major revision to its publication, Towards Standards for Identifying and Managing Bias in Artificial Intelligence (NIST 1270 Special Publication), last year’s public Following the comment period, the National Institute of Standards and Technology (NIST) made a strong argument for looking beyond data and even ML processes to uncover and destroy AI bias.

Rather than blaming poorly collected or poorly labeled data, the authors say the next frontier of bias in AI is “human and systemic institutional and social factors” and push for a shift away from A socio-technical perspective looks for better answers.

“Context is everything,” said Reva Schwartz, NIST’s lead researcher on bias in artificial intelligence and one of the report’s authors. “AI systems do not operate in isolation. They help people make decisions that directly impact the lives of others. If we are to develop trustworthy AI systems, we need to consider all factors that could erode public trust in AI. Among these factors There are many that go beyond the technology itself and influence it, as highlighted by the comments we received from a variety of people and organizations."

Causing AI Bias What are human and systemic biases?

According to the NIST report, human beings are divided into two broad categories: individuals and groups, and there are many specific biases under each category.

Individual human biases include automation complacency, where people rely too much on automated skills; implicit bias, an unconscious belief, attitude, association, or stereotype that affects someone's decision-making; There is also confirmation bias, where people prefer information that is consistent or congruent with their existing beliefs.

Group Human foundations include groupthink, the phenomenon in which people make suboptimal decisions out of a desire to conform to the group or avoid disagreement; funding bias, when reporting is biased The results satisfy a funding agency or financial backer, which in turn may be subject to additional personal/group biases.

For systemic bias, the NIST report defines it as historical, social and institutional. Essentially, long-standing biases have been codified into society and institutions over time and are largely accepted as “facts” or “just the way things are.”

The reason these biases matter is because of how much impact AI deployment is having on the way organizations work today. Because of racially biased data, people are being denied mortgages, denying them the chance to own a home for the first time. Job seekers are being denied interviews because the AI ​​is trained to make hiring decisions that historically favor men over women. Promising young students are denied interviews or admission to colleges because their last names don't match those of successful people from the past.

In other words: Biased AI creates as many locked doors as efficient openings. If organizations don’t actively work to eliminate bias in their deployments, they will quickly find themselves experiencing a severe lack of trust in how they think and operate.

At its core is the recognition that the results of any AI application are more than just mathematical and computational inputs. They are made by developers or data scientists, their positions and institutions vary, and they all have a certain level of burden.

NIST’s report reads: “A sociotechnical approach to AI considers the values ​​and behaviors modeled from data sets, the humans who interact with them, and complex organizational factors. These factors are involved in their commissioning, design, development, and ultimate deployment."

NIST believes that through a sociotechnical lens, organizations can improve , privacy, reliability, robustness, security and security resiliency” to foster trust.

One of their recommendations was for organizations to implement or improve their test, evaluation, validation and verification (TEVV) processes. There should be ways to mathematically verify biases in a given data set or trained model. They also recommend creating more involvement from different fields and positions in AI development efforts, and having multiple stakeholders from different departments or outside the organization. In the “human-in-the-loop” model, individuals or groups continuously correct the basic ML output, which is also an effective tool for eliminating bias.

In addition to these and revised reports, there is NIST’s Artificial Intelligence Risk Management Framework (AI RMF), a consensus-driven set of recommendations for managing the risks involved in AI systems. Once completed, it will cover transparency, design and development, governance and testing of AI technologies and products. The initial comment period for the AI ​​RMF has passed, but we still have many opportunities to learn about AI risks and mitigations.

The above is the detailed content of NIST: AI bias goes far beyond the data itself. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
2 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
Repo: How To Revive Teammates
4 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
Hello Kitty Island Adventure: How To Get Giant Seeds
3 weeks ago By 尊渡假赌尊渡假赌尊渡假赌

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

Bytedance Cutting launches SVIP super membership: 499 yuan for continuous annual subscription, providing a variety of AI functions Bytedance Cutting launches SVIP super membership: 499 yuan for continuous annual subscription, providing a variety of AI functions Jun 28, 2024 am 03:51 AM

This site reported on June 27 that Jianying is a video editing software developed by FaceMeng Technology, a subsidiary of ByteDance. It relies on the Douyin platform and basically produces short video content for users of the platform. It is compatible with iOS, Android, and Windows. , MacOS and other operating systems. Jianying officially announced the upgrade of its membership system and launched a new SVIP, which includes a variety of AI black technologies, such as intelligent translation, intelligent highlighting, intelligent packaging, digital human synthesis, etc. In terms of price, the monthly fee for clipping SVIP is 79 yuan, the annual fee is 599 yuan (note on this site: equivalent to 49.9 yuan per month), the continuous monthly subscription is 59 yuan per month, and the continuous annual subscription is 499 yuan per year (equivalent to 41.6 yuan per month) . In addition, the cut official also stated that in order to improve the user experience, those who have subscribed to the original VIP

Context-augmented AI coding assistant using Rag and Sem-Rag Context-augmented AI coding assistant using Rag and Sem-Rag Jun 10, 2024 am 11:08 AM

Improve developer productivity, efficiency, and accuracy by incorporating retrieval-enhanced generation and semantic memory into AI coding assistants. Translated from EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG, author JanakiramMSV. While basic AI programming assistants are naturally helpful, they often fail to provide the most relevant and correct code suggestions because they rely on a general understanding of the software language and the most common patterns of writing software. The code generated by these coding assistants is suitable for solving the problems they are responsible for solving, but often does not conform to the coding standards, conventions and styles of the individual teams. This often results in suggestions that need to be modified or refined in order for the code to be accepted into the application

Seven Cool GenAI & LLM Technical Interview Questions Seven Cool GenAI & LLM Technical Interview Questions Jun 07, 2024 am 10:06 AM

To learn more about AIGC, please visit: 51CTOAI.x Community https://www.51cto.com/aigc/Translator|Jingyan Reviewer|Chonglou is different from the traditional question bank that can be seen everywhere on the Internet. These questions It requires thinking outside the box. Large Language Models (LLMs) are increasingly important in the fields of data science, generative artificial intelligence (GenAI), and artificial intelligence. These complex algorithms enhance human skills and drive efficiency and innovation in many industries, becoming the key for companies to remain competitive. LLM has a wide range of applications. It can be used in fields such as natural language processing, text generation, speech recognition and recommendation systems. By learning from large amounts of data, LLM is able to generate text

Can fine-tuning really allow LLM to learn new things: introducing new knowledge may make the model produce more hallucinations Can fine-tuning really allow LLM to learn new things: introducing new knowledge may make the model produce more hallucinations Jun 11, 2024 pm 03:57 PM

Large Language Models (LLMs) are trained on huge text databases, where they acquire large amounts of real-world knowledge. This knowledge is embedded into their parameters and can then be used when needed. The knowledge of these models is "reified" at the end of training. At the end of pre-training, the model actually stops learning. Align or fine-tune the model to learn how to leverage this knowledge and respond more naturally to user questions. But sometimes model knowledge is not enough, and although the model can access external content through RAG, it is considered beneficial to adapt the model to new domains through fine-tuning. This fine-tuning is performed using input from human annotators or other LLM creations, where the model encounters additional real-world knowledge and integrates it

To provide a new scientific and complex question answering benchmark and evaluation system for large models, UNSW, Argonne, University of Chicago and other institutions jointly launched the SciQAG framework To provide a new scientific and complex question answering benchmark and evaluation system for large models, UNSW, Argonne, University of Chicago and other institutions jointly launched the SciQAG framework Jul 25, 2024 am 06:42 AM

Editor |ScienceAI Question Answering (QA) data set plays a vital role in promoting natural language processing (NLP) research. High-quality QA data sets can not only be used to fine-tune models, but also effectively evaluate the capabilities of large language models (LLM), especially the ability to understand and reason about scientific knowledge. Although there are currently many scientific QA data sets covering medicine, chemistry, biology and other fields, these data sets still have some shortcomings. First, the data form is relatively simple, most of which are multiple-choice questions. They are easy to evaluate, but limit the model's answer selection range and cannot fully test the model's ability to answer scientific questions. In contrast, open-ended Q&A

SOTA performance, Xiamen multi-modal protein-ligand affinity prediction AI method, combines molecular surface information for the first time SOTA performance, Xiamen multi-modal protein-ligand affinity prediction AI method, combines molecular surface information for the first time Jul 17, 2024 pm 06:37 PM

Editor | KX In the field of drug research and development, accurately and effectively predicting the binding affinity of proteins and ligands is crucial for drug screening and optimization. However, current studies do not take into account the important role of molecular surface information in protein-ligand interactions. Based on this, researchers from Xiamen University proposed a novel multi-modal feature extraction (MFE) framework, which for the first time combines information on protein surface, 3D structure and sequence, and uses a cross-attention mechanism to compare different modalities. feature alignment. Experimental results demonstrate that this method achieves state-of-the-art performance in predicting protein-ligand binding affinities. Furthermore, ablation studies demonstrate the effectiveness and necessity of protein surface information and multimodal feature alignment within this framework. Related research begins with "S

Five schools of machine learning you don't know about Five schools of machine learning you don't know about Jun 05, 2024 pm 08:51 PM

Machine learning is an important branch of artificial intelligence that gives computers the ability to learn from data and improve their capabilities without being explicitly programmed. Machine learning has a wide range of applications in various fields, from image recognition and natural language processing to recommendation systems and fraud detection, and it is changing the way we live. There are many different methods and theories in the field of machine learning, among which the five most influential methods are called the "Five Schools of Machine Learning". The five major schools are the symbolic school, the connectionist school, the evolutionary school, the Bayesian school and the analogy school. 1. Symbolism, also known as symbolism, emphasizes the use of symbols for logical reasoning and expression of knowledge. This school of thought believes that learning is a process of reverse deduction, through existing

70B model generates 1,000 tokens in seconds, code rewriting surpasses GPT-4o, from the Cursor team, a code artifact invested by OpenAI 70B model generates 1,000 tokens in seconds, code rewriting surpasses GPT-4o, from the Cursor team, a code artifact invested by OpenAI Jun 13, 2024 pm 03:47 PM

70B model, 1000 tokens can be generated in seconds, which translates into nearly 4000 characters! The researchers fine-tuned Llama3 and introduced an acceleration algorithm. Compared with the native version, the speed is 13 times faster! Not only is it fast, its performance on code rewriting tasks even surpasses GPT-4o. This achievement comes from anysphere, the team behind the popular AI programming artifact Cursor, and OpenAI also participated in the investment. You must know that on Groq, a well-known fast inference acceleration framework, the inference speed of 70BLlama3 is only more than 300 tokens per second. With the speed of Cursor, it can be said that it achieves near-instant complete code file editing. Some people call it a good guy, if you put Curs

See all articles