How to use Python convolution function
Convolution function
python
provides a variety of convolution schemes. In contrast, the convolution function defined in ndimage
is functionally It is slightly more complicated than the convolution in numpy
and signal
. This can be seen just from the number of input parameters.
numpy.convolve(a, v, mode='full') scipy.ndimage.convolve1d(input, weights, axis=-1, output=None, mode='reflect', cval=0.0, origin=0) scipy.signal.convolve(in1, in2, mode='full', method='auto') scipy.ndimage.convolve(input, weights, output=None, mode='reflect', cval=0.0, origin=0)
The first two are 1-dimensional convolution function, and ndimage can perform convolution operations on multi-dimensional arrays along a single coordinate axis, and the latter two are multi-dimensional convolutions.
The convolution functions in numpy and signal have three modes, which are used to adjust the edge characteristics after convolution. If the dimensions of the two input convolution objects are N NN and M MM, then The output results of these three modes are
full
: The output dimension is N M − 1 N M-1N M−1, and the signals at the last point are completely disjoint. overlap, so the edge effect is obvious.same
: Output dimension max ( M , N ) \max(M,N)max(M,N), edge effects are still visible##valid
in the: Output dimension∣M − The
convolve
ndimage are all eliminated for the edge effect, and the image is expanded, and its
modeThe decision is the filling format after expansion. Assume that the array to be filtered is
a b c d, then in different modes, fill the edges as follows
Data | Right padding | ||
---|---|---|---|
reflect
| d c b aa b c d | d c b a | |
k k k k | a b c d | k k k k | |
a a a a | a b c dd d d | ##mirror | |
d c b a b c d | c b a | wrap | |
a b c d a b c d | a b c d | where , |
. These five methods of modifying the boundary are very common among the functions of
scipy.ndimage
, especially the filter functions involving convolution, which are standard.
Comparative testNext, do a performance test for these different convolution functions. Use a 5 × 5 convolution template to perform convolution calculations on a 1000 × 1000 matrix. , let’s take a look at the convolution of different implementations and how fast it is
import numpy as np import scipy.signal as ss import scipy.ndimage as sn from timeit import timeit A = np.random.rand(1000,1000) B = np.random.rand(5,5) timeit(lambda : ss.convolve(A, B), number=10) # 0.418 timeit(lambda : sn.convolve(A, B), number=10) # 0.126
In comparison, the convolution in
ndimageis obviously more efficient.
Next, test the performance of one-dimensional convolution <div class="code" style="position:relative; padding:0px; margin:0px;"><pre class='brush:php;toolbar:false;'>A = np.random.rand(10000)
B = np.random.rand(15)
timeit(lambda : np.convolve(A, B), number=1000)
# 0.15256029999727616
timeit(lambda : ss.convolve(A, B), number=1000)
# 0.1231262000001152
timeit(lambda : sn.convolve(A, B), number=1000)
# 0.09218210000108229
timeit(lambda : sn.convolve1d(A, B), number=1000)
# 0.03915820000111125</pre><div class="contentsignin">Copy after login</div></div>
In contrast,
is indeed the convolution of
1d function, the fastest, while the functions provided in numpy
are the slowest. Convolution application
Convolution operations are often used in image filtering and edge extraction. For example, through a matrix similar to the one below, the vertical edges of the image can be extracted.
from scipy.misc import ascent import matplotlib.pyplot as plt img = ascent() temp = np.zeros([3,3]) temp[:,0] = -1 temp[:,2] = 1 edge = sn.convolve(img, temp) fig = plt.figure() ax = fig.add_subplot(121) ax.imshow(img) ax = fig.add_subplot(122) ax.imshow(edge) plt.show()
The above is the detailed content of How to use Python convolution function. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics



MySQL has a free community version and a paid enterprise version. The community version can be used and modified for free, but the support is limited and is suitable for applications with low stability requirements and strong technical capabilities. The Enterprise Edition provides comprehensive commercial support for applications that require a stable, reliable, high-performance database and willing to pay for support. Factors considered when choosing a version include application criticality, budgeting, and technical skills. There is no perfect option, only the most suitable option, and you need to choose carefully according to the specific situation.

HadiDB: A lightweight, high-level scalable Python database HadiDB (hadidb) is a lightweight database written in Python, with a high level of scalability. Install HadiDB using pip installation: pipinstallhadidb User Management Create user: createuser() method to create a new user. The authentication() method authenticates the user's identity. fromhadidb.operationimportuseruser_obj=user("admin","admin")user_obj.

MySQL Workbench can connect to MariaDB, provided that the configuration is correct. First select "MariaDB" as the connector type. In the connection configuration, set HOST, PORT, USER, PASSWORD, and DATABASE correctly. When testing the connection, check that the MariaDB service is started, whether the username and password are correct, whether the port number is correct, whether the firewall allows connections, and whether the database exists. In advanced usage, use connection pooling technology to optimize performance. Common errors include insufficient permissions, network connection problems, etc. When debugging errors, carefully analyze error information and use debugging tools. Optimizing network configuration can improve performance

It is impossible to view MongoDB password directly through Navicat because it is stored as hash values. How to retrieve lost passwords: 1. Reset passwords; 2. Check configuration files (may contain hash values); 3. Check codes (may hardcode passwords).

The MySQL connection may be due to the following reasons: MySQL service is not started, the firewall intercepts the connection, the port number is incorrect, the user name or password is incorrect, the listening address in my.cnf is improperly configured, etc. The troubleshooting steps include: 1. Check whether the MySQL service is running; 2. Adjust the firewall settings to allow MySQL to listen to port 3306; 3. Confirm that the port number is consistent with the actual port number; 4. Check whether the user name and password are correct; 5. Make sure the bind-address settings in my.cnf are correct.

MySQL can run without network connections for basic data storage and management. However, network connection is required for interaction with other systems, remote access, or using advanced features such as replication and clustering. Additionally, security measures (such as firewalls), performance optimization (choose the right network connection), and data backup are critical to connecting to the Internet.

MySQL database performance optimization guide In resource-intensive applications, MySQL database plays a crucial role and is responsible for managing massive transactions. However, as the scale of application expands, database performance bottlenecks often become a constraint. This article will explore a series of effective MySQL performance optimization strategies to ensure that your application remains efficient and responsive under high loads. We will combine actual cases to explain in-depth key technologies such as indexing, query optimization, database design and caching. 1. Database architecture design and optimized database architecture is the cornerstone of MySQL performance optimization. Here are some core principles: Selecting the right data type and selecting the smallest data type that meets the needs can not only save storage space, but also improve data processing speed.

As a data professional, you need to process large amounts of data from various sources. This can pose challenges to data management and analysis. Fortunately, two AWS services can help: AWS Glue and Amazon Athena.
