Table of Contents
Is artificial intelligence the right tool for the job?
Choose Carbon-Friendly Regions
Other Environmentally Friendly Approaches
Buchanan said the Green Software Foundation and other initiatives have made progress in measuring and reducing software's carbon footprint.
Home Technology peripherals AI How Green AI Addresses Impact on Climate Change

How Green AI Addresses Impact on Climate Change

May 21, 2023 pm 04:52 PM
AI machine learning green ai

How Green AI Addresses Impact on Climate Change

The development of computationally intensive technologies such as machine learning creates a high carbon footprint and contributes to climate change. In addition to rapid growth, Machinery has an expanding portfolio of green AI tools and technologies to help offset carbon emissions and provide a more sustainable path to development.

The environmental costs are high, according to research published last month by Microsoft and the Allen Institute for Artificial Intelligence, along with co-authors from Hebrew University, Carnegie Mellon University and the AI ​​community hugsFace. Will Buchanan, product manager for Azure Machine Learning at Microsoft, a member of the Green Software Foundation, and a co-author of the study, said that the study extrapolated the data to show that for a 6 billion parameter ML model (a large language model), One training instance produces as much carbon dioxide as burning all the coal in a large train car.

Forrester Research analyst Abhijit Sunil said that in the past, code was optimized in embedded systems that were constrained by limited resources, such as Cell phone, refrigerator or satellite. However, emerging technologies such as AI and ML are not subject to these limitations, he said.

“When we have seemingly unlimited resources, the priority is to write as much code as possible,” Sunil said.

Is artificial intelligence the right tool for the job?

Green artificial intelligence, the process of making artificial intelligence development more sustainable, is emerging as a possible solution to the problem of algorithmic power consumption. "This is all about reducing the hidden costs of technology development itself," Buchanan said.

Abhishek, founder and principal researcher of the Montreal Institute for Ethics in Artificial Intelligence and chairman of the Green Software Foundation's standards working group The starting point for any developer, said Abhishek Gupta, is to understand whether artificial intelligence is right for the job and figure out why machine learning is being deployed in the first place.

“You don’t always need machine learning to solve a problem,” Gupta said.

Gupta said developers should also consider conducting a cost-benefit analysis when deploying ML. For example, if machine learning is used to increase satisfaction with a platform from 95 percent to 96 percent, that may not be worth the extra cost to the environment, he said.

Choose Carbon-Friendly Regions

Once developers decide to use AI, choosing to deploy models in carbon-friendly regions will have the greatest impact on operational emissions, boosting the software’s carbon intensity rate, Buchanan said. Reduced by approximately 75%.

Buchanan said: "This is the most influential lever that any developer can use today."

Gupta gave an example: Developers can choose to build in Canada Operates in Quebec rather than in the U.S. Midwest, where electricity comes primarily from fossil fuels. More than 90% of the electricity in Quebec, Canada, comes from hydroelectric power.

When deciding where machine learning jobs should run, companies must also consider factors beyond the type of energy source. In April 2021, Google Cloud launched a Green Zone Selector to help companies evaluate cost, latency, and carbon footprint when choosing where to operate. But not all cloud providers have such tools readily available, Buchanan said.

To solve this problem, the Green Software Foundation is developing a new tool called Carbon AwareSDK that will recommend the best regions to launch resources from, he said. An alpha version should be available in the next few months.

Other Environmentally Friendly Approaches

If the only available computers are in areas with poor power, Gupta said developers can use federated learning-style deployments, in which training is performed in a distributed fashion across power lines. performed on all devices present in the system. But federated learning may not be suitable for all workloads, such as those that must comply with legal privacy considerations. Another option, Gupta said, is for developers to use tinyML, which shrinks machine learning models through quantization, knowledge distillation and other methods. The goal, he said, is to minimize models so they can be deployed in a more resource-efficient way, such as on edge devices. But since these models provide limited intelligence, they may not be suitable for complex use cases.

“The trend across the industry is to think bigger is better, but our research shows you can counter that and make it clear you need to choose the right tool for the job,” Buchanan said.

Consumption metrics could be the solution

Buchanan said the Green Software Foundation and other initiatives have made progress in measuring and reducing software's carbon footprint.

For example, Microsoft last year made energy consumption metrics available in Azure Machine Learning, allowing developers to pinpoint their most energy-intensive work. These metrics focus on the power-hungry GPU, which is faster than the CPU but consumes more than 10 times the energy. GPUs, which are often used to run AI models, are often the biggest culprit when it comes to power consumption, Buchanan said.

However, there is still a need for more interoperable tools, Buchanan said, referring to the fragmented green AI tools currently available. "The Green Software Foundation is working on one thing," he said, "but I think cloud providers need to make coordinated investments to improve energy efficiency."

The ultimate goal, Gupta said, is to trigger behavior change so that green AI practices become the norm. "We're not just doing this for accounting purposes," he said.

The above is the detailed content of How Green AI Addresses Impact on Climate Change. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

Bytedance Cutting launches SVIP super membership: 499 yuan for continuous annual subscription, providing a variety of AI functions Bytedance Cutting launches SVIP super membership: 499 yuan for continuous annual subscription, providing a variety of AI functions Jun 28, 2024 am 03:51 AM

This site reported on June 27 that Jianying is a video editing software developed by FaceMeng Technology, a subsidiary of ByteDance. It relies on the Douyin platform and basically produces short video content for users of the platform. It is compatible with iOS, Android, and Windows. , MacOS and other operating systems. Jianying officially announced the upgrade of its membership system and launched a new SVIP, which includes a variety of AI black technologies, such as intelligent translation, intelligent highlighting, intelligent packaging, digital human synthesis, etc. In terms of price, the monthly fee for clipping SVIP is 79 yuan, the annual fee is 599 yuan (note on this site: equivalent to 49.9 yuan per month), the continuous monthly subscription is 59 yuan per month, and the continuous annual subscription is 499 yuan per year (equivalent to 41.6 yuan per month) . In addition, the cut official also stated that in order to improve the user experience, those who have subscribed to the original VIP

Context-augmented AI coding assistant using Rag and Sem-Rag Context-augmented AI coding assistant using Rag and Sem-Rag Jun 10, 2024 am 11:08 AM

Improve developer productivity, efficiency, and accuracy by incorporating retrieval-enhanced generation and semantic memory into AI coding assistants. Translated from EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG, author JanakiramMSV. While basic AI programming assistants are naturally helpful, they often fail to provide the most relevant and correct code suggestions because they rely on a general understanding of the software language and the most common patterns of writing software. The code generated by these coding assistants is suitable for solving the problems they are responsible for solving, but often does not conform to the coding standards, conventions and styles of the individual teams. This often results in suggestions that need to be modified or refined in order for the code to be accepted into the application

Can fine-tuning really allow LLM to learn new things: introducing new knowledge may make the model produce more hallucinations Can fine-tuning really allow LLM to learn new things: introducing new knowledge may make the model produce more hallucinations Jun 11, 2024 pm 03:57 PM

Large Language Models (LLMs) are trained on huge text databases, where they acquire large amounts of real-world knowledge. This knowledge is embedded into their parameters and can then be used when needed. The knowledge of these models is "reified" at the end of training. At the end of pre-training, the model actually stops learning. Align or fine-tune the model to learn how to leverage this knowledge and respond more naturally to user questions. But sometimes model knowledge is not enough, and although the model can access external content through RAG, it is considered beneficial to adapt the model to new domains through fine-tuning. This fine-tuning is performed using input from human annotators or other LLM creations, where the model encounters additional real-world knowledge and integrates it

Seven Cool GenAI & LLM Technical Interview Questions Seven Cool GenAI & LLM Technical Interview Questions Jun 07, 2024 am 10:06 AM

To learn more about AIGC, please visit: 51CTOAI.x Community https://www.51cto.com/aigc/Translator|Jingyan Reviewer|Chonglou is different from the traditional question bank that can be seen everywhere on the Internet. These questions It requires thinking outside the box. Large Language Models (LLMs) are increasingly important in the fields of data science, generative artificial intelligence (GenAI), and artificial intelligence. These complex algorithms enhance human skills and drive efficiency and innovation in many industries, becoming the key for companies to remain competitive. LLM has a wide range of applications. It can be used in fields such as natural language processing, text generation, speech recognition and recommendation systems. By learning from large amounts of data, LLM is able to generate text

Five schools of machine learning you don't know about Five schools of machine learning you don't know about Jun 05, 2024 pm 08:51 PM

Machine learning is an important branch of artificial intelligence that gives computers the ability to learn from data and improve their capabilities without being explicitly programmed. Machine learning has a wide range of applications in various fields, from image recognition and natural language processing to recommendation systems and fraud detection, and it is changing the way we live. There are many different methods and theories in the field of machine learning, among which the five most influential methods are called the "Five Schools of Machine Learning". The five major schools are the symbolic school, the connectionist school, the evolutionary school, the Bayesian school and the analogy school. 1. Symbolism, also known as symbolism, emphasizes the use of symbols for logical reasoning and expression of knowledge. This school of thought believes that learning is a process of reverse deduction, through existing

To provide a new scientific and complex question answering benchmark and evaluation system for large models, UNSW, Argonne, University of Chicago and other institutions jointly launched the SciQAG framework To provide a new scientific and complex question answering benchmark and evaluation system for large models, UNSW, Argonne, University of Chicago and other institutions jointly launched the SciQAG framework Jul 25, 2024 am 06:42 AM

Editor |ScienceAI Question Answering (QA) data set plays a vital role in promoting natural language processing (NLP) research. High-quality QA data sets can not only be used to fine-tune models, but also effectively evaluate the capabilities of large language models (LLM), especially the ability to understand and reason about scientific knowledge. Although there are currently many scientific QA data sets covering medicine, chemistry, biology and other fields, these data sets still have some shortcomings. First, the data form is relatively simple, most of which are multiple-choice questions. They are easy to evaluate, but limit the model's answer selection range and cannot fully test the model's ability to answer scientific questions. In contrast, open-ended Q&A

SOTA performance, Xiamen multi-modal protein-ligand affinity prediction AI method, combines molecular surface information for the first time SOTA performance, Xiamen multi-modal protein-ligand affinity prediction AI method, combines molecular surface information for the first time Jul 17, 2024 pm 06:37 PM

Editor | KX In the field of drug research and development, accurately and effectively predicting the binding affinity of proteins and ligands is crucial for drug screening and optimization. However, current studies do not take into account the important role of molecular surface information in protein-ligand interactions. Based on this, researchers from Xiamen University proposed a novel multi-modal feature extraction (MFE) framework, which for the first time combines information on protein surface, 3D structure and sequence, and uses a cross-attention mechanism to compare different modalities. feature alignment. Experimental results demonstrate that this method achieves state-of-the-art performance in predicting protein-ligand binding affinities. Furthermore, ablation studies demonstrate the effectiveness and necessity of protein surface information and multimodal feature alignment within this framework. Related research begins with "S

SK Hynix will display new AI-related products on August 6: 12-layer HBM3E, 321-high NAND, etc. SK Hynix will display new AI-related products on August 6: 12-layer HBM3E, 321-high NAND, etc. Aug 01, 2024 pm 09:40 PM

According to news from this site on August 1, SK Hynix released a blog post today (August 1), announcing that it will attend the Global Semiconductor Memory Summit FMS2024 to be held in Santa Clara, California, USA from August 6 to 8, showcasing many new technologies. generation product. Introduction to the Future Memory and Storage Summit (FutureMemoryandStorage), formerly the Flash Memory Summit (FlashMemorySummit) mainly for NAND suppliers, in the context of increasing attention to artificial intelligence technology, this year was renamed the Future Memory and Storage Summit (FutureMemoryandStorage) to invite DRAM and storage vendors and many more players. New product SK hynix launched last year

See all articles