Table of Contents
Locked concurrency
Lock-free concurrency
CAS (compare and swap) primitive
Lock-free stack (naive version)
Memory Release
Home Java javaTutorial Java lock concurrency, lock-free concurrency and CAS example analysis

Java lock concurrency, lock-free concurrency and CAS example analysis

May 23, 2023 pm 01:34 PM
java cas

Locked concurrency

For most programmers (of course I am basically one of them), concurrent programming is almost equivalent to adding a lock to the relevant data structure. (Mutex). For example, if we need a stack that supports concurrency, the easiest way is to add a lock to a single-threaded stack std::sync::Mutex . (Arc is added to allow multiple threads to have ownership of the stack)

<code>
   
   
  <p>use std::sync::{Mutex, Arc};<br><br>#[derive(Clone)]<br>struct ConcurrentStack<T> {<br>    inner: Arc<Mutex<Vec<T>>>,<br>}<br><br>impl<T> ConcurrentStack<T> {<br>    pub fn new() -> Self {<br>        ConcurrentStack {<br>            inner: Arc::new(Mutex::new(Vec::new())),<br>        }<br>    }<br><br>    pub fn push(&self, data: T) {<br>        let mut inner = self.inner.lock().unwrap();<br>        (*inner).push(data);<br>    }<br><br>    pub fn pop(&self) -> Option<T> {<br>        let mut inner = self.inner.lock().unwrap();<br>        (*inner).pop()<br>    }<br><br>}<br>
  
    

   
   
  </p></code>
Copy after login

The code is very convenient to write, because it is almost the same as the single-threaded version, which is obviously a benefit. You only need to write the single-threaded version, add a lock to the data structure, and then acquire and release (basically automatic in Rust) the lock when necessary.

So what’s the problem? First of all, aside from the fact that you may forget to acquire and release the lock (which is almost impossible to happen in Rust thanks to Rust), you may face the problem of deadlock (the Dining Philosopher Problem). And not to mention that some low-priority tasks may seize the resources of high-priority tasks for a long time (because locks come first). When the number of threads is relatively large, most of the time is spent on synchronization ( Waiting for the lock to be acquired), performance will become very poor. Consider a concurrent database with a large number of reads and occasional writes. If locks are used to handle it, even if the database does not have any updates, synchronization will be required between every two reads, which is too costly!

Lock-free concurrency

As a result, a large number of computer scientists and programmers turned their attention to lock-free concurrency. Lock-free object: If a shared object guarantees that no matter what other threads do, some thread will always complete an operation on it after a limited number of system operation steps. Her91 . In other words, at least one thread will achieve results from its operation. Concurrency using locks obviously does not fall into this category: if the thread that acquired the lock is delayed, no thread can complete any operation during this time. In extreme cases, if a deadlock occurs, no thread can complete any operation.

CAS (compare and swap) primitive

Then you may be curious, how to achieve lock-free concurrency? Are there any examples? Before that, let's take a look at an atomic primitive that is recognized to be very important in lock-free concurrency: CAS. The process of CAS is to compare a stored value with a specified value. Only when they are the same, the stored value will be modified to the new specified value. CAS is an atomic operation (supported by the processor, such as x86 compare and exchange (CMPXCHG)). This atomicity guarantees that if other threads have changed the stored value, the write will fail. in the Rust standard library std::sync::atomic The types in provide CAS operations, such as atomic pointers std::sync::atomic::AtomicPtr

<code>
   
   
  <p>pub fn compare_and_swap(<br>    &self,<br>    current: *mut T,<br>    new: *mut T,<br>    order: Ordering<br>) -> *mut T<br>
  
    

   
   
  </p></code>
Copy after login

(Here, don’t worry about what ordering is, that is to say, please just ignore it. Acquire , Release , Relaxed )

Lock-free stack (naive version)

<code>
   
   
  <p>#![feature(box_raw)]<br><br>use std::ptr::{self, null_mut};<br>use std::sync::atomic::AtomicPtr;<br>use std::sync::atomic::Ordering::{Relaxed, Release, Acquire};<br><br>pub struct Stack<T> {<br>    head: AtomicPtr<Node<T>>,<br>}<br><br>struct Node<T> {<br>    data: T,<br>    next: *mut Node<T>,<br>}<br><br>impl<T> Stack<T> {<br>    pub fn new() -> Stack<T> {<br>        Stack {<br>            head: AtomicPtr::new(null_mut()),<br>        }<br>    }<br><br>    pub fn pop(&self) -> Option<T> {<br>        loop {<br>            // 快照<br>            let head = self.head.load(Acquire);<br><br>            // 如果栈为空<br>            if head == null_mut() {<br>                return None<br>            } else {<br>                let next = unsafe { (*head).next };<br><br>                // 如果现状较快照并没有发生改变<br>                if self.head.compare_and_swap(head, next, Release) == head {<br><br>                    // 读取内容并返回<br>                    return Some(unsafe { ptr::read(&(*head).data) })<br>                }<br>            }<br>        }<br>    }<br><br>    pub fn push(&self, t: T) {<br>        // 创建node并转化为*mut指针<br>        let n = Box::into_raw(Box::new(Node {<br>            data: t,<br>            next: null_mut(),<br>        }));<br>        loop {<br>            // 快照<br>            let head = self.head.load(Relaxed);<br><br>            // 基于快照更新node<br>            unsafe { (*n).next = head; }<br><br>            // 如果在此期间,快照仍然没有过时<br>            if self.head.compare_and_swap(head, n, Release) == head {<br>                break<br>            }<br>        }<br>    }<br>}<br>
  
    

   
   
  </p></code>
Copy after login

We can see that the idea is the same whether it is pop or push: pop on the snapshot first or push, and then try to replace the original data with CAS. If the snapshot and data are equal, it means that no writes were performed during this period, so the update will succeed. If the data is inconsistent, it means that other threads have modified it during this period and need to start again. This is a lock-free stack. It seems everything is done!

Memory Release

If you are using Java or other programming languages ​​with GC, you may have done a lot of work. The problem now is that in a language like Rust without GC, no one releases

return Some(unsafe { ptr::read(&(*head).data) })
Copy after login

in pop head , this is a memory leak! Hey, it seems that lock-free concurrency is not easy.

The above is the detailed content of Java lock concurrency, lock-free concurrency and CAS example analysis. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
2 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
Hello Kitty Island Adventure: How To Get Giant Seeds
1 months ago By 尊渡假赌尊渡假赌尊渡假赌
Two Point Museum: All Exhibits And Where To Find Them
1 months ago By 尊渡假赌尊渡假赌尊渡假赌

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

Square Root in Java Square Root in Java Aug 30, 2024 pm 04:26 PM

Guide to Square Root in Java. Here we discuss how Square Root works in Java with example and its code implementation respectively.

Perfect Number in Java Perfect Number in Java Aug 30, 2024 pm 04:28 PM

Guide to Perfect Number in Java. Here we discuss the Definition, How to check Perfect number in Java?, examples with code implementation.

Random Number Generator in Java Random Number Generator in Java Aug 30, 2024 pm 04:27 PM

Guide to Random Number Generator in Java. Here we discuss Functions in Java with examples and two different Generators with ther examples.

Armstrong Number in Java Armstrong Number in Java Aug 30, 2024 pm 04:26 PM

Guide to the Armstrong Number in Java. Here we discuss an introduction to Armstrong's number in java along with some of the code.

Weka in Java Weka in Java Aug 30, 2024 pm 04:28 PM

Guide to Weka in Java. Here we discuss the Introduction, how to use weka java, the type of platform, and advantages with examples.

Smith Number in Java Smith Number in Java Aug 30, 2024 pm 04:28 PM

Guide to Smith Number in Java. Here we discuss the Definition, How to check smith number in Java? example with code implementation.

Java Spring Interview Questions Java Spring Interview Questions Aug 30, 2024 pm 04:29 PM

In this article, we have kept the most asked Java Spring Interview Questions with their detailed answers. So that you can crack the interview.

Break or return from Java 8 stream forEach? Break or return from Java 8 stream forEach? Feb 07, 2025 pm 12:09 PM

Java 8 introduces the Stream API, providing a powerful and expressive way to process data collections. However, a common question when using Stream is: How to break or return from a forEach operation? Traditional loops allow for early interruption or return, but Stream's forEach method does not directly support this method. This article will explain the reasons and explore alternative methods for implementing premature termination in Stream processing systems. Further reading: Java Stream API improvements Understand Stream forEach The forEach method is a terminal operation that performs one operation on each element in the Stream. Its design intention is

See all articles