It's so useful! Share these built-in Python modules!
argparse
Python当中的argparse模块主要用于命令行的参数解析,可以帮助用户轻松地编写命令行接口,我们先来看一个例子。
import argparse # 解析参数 parser = argparse.ArgumentParser() parser.add_argument("name") args = parser.parse_args() # 打印结果 print(f'Hello {args.name}!')
然后我们在终端当中运行以下的代码:
python python_package.py 俊欣
就会出现以下的结果。
Hello 俊欣!
要是我们忘记带上参数了,会自动出现如下的提示:
usage: python_package.py [-h] name python_package.py: error: the following arguments are required: name
当然我们也可以通过如下的命令行来查看需要添加什么样的参数。
python python_package.py -h
出来的结果如下所示:
usage: python_package.py [-h] name positional arguments: name optional arguments: -h, --helpshow this help message and exit
当然我们并不知道这个name的参数到底指的是什么,因为我们可以更改一下我们写的程序。
import argparse # 解析参数 parser = argparse.ArgumentParser() parser.add_argument("name", help="Enter your name") args = parser.parse_args() print(f'Hello {args.name}!')
这样的话,我们再来运行一下如下的命令行:
python python_package.py -h
output
usage: python_package.py [-h] name positional arguments: nameEnter your name optional arguments: -h, --helpshow this help message and exit
有时候我们想要输入的不止一个参数,我们可以这样来做,
import argparse # 解析参数 parser = argparse.ArgumentParser() parser.add_argument("name", help="Enter your name") parser.add_argument("age", help='Enter your age', type=int) args = parser.parse_args() born_year = 2022 - args.age print(f'Hello {args.name}! You were borned in {born_year}.')
我们通过终端输入如下的程序。
python python_package.py 俊欣 24
output
Hello 俊欣! You were borned in 1998.
shutil
shutil模块提供了大量的文件高级操作。特别是针对文件的拷贝、删除、移动、压缩和解压缩等操作,我们先来看一个例子:
import shutil print(shutil.which("python"))
output
路径......
上面返回的是Python可执行程序的路径,文件移动的代码是shutil.move(src, dst)。
shutil.move("源路径", "目标路径")
除此之外我们主要会用到的还有:
- shutil.copyfile(src, dst): 复制文件
- shutil.copytree(olddir, newdir, True/False):复制整个文件夹目录
- shutil.rmtree(src): 递归删除一整个目录以及目录文件夹下的所有内容
glob
glob模块主要是用来查找符合特定规则的目录和文件,并将查找出来的结果返回到一个列表当中来。它还可以和正则通配符一起来使用,例如:
def choose_numbered_files(root="."): return glob.glob(f"{root}/[0-9].*") choose_numbered_files("images")
返回的是在images路径下的带有数字的文件,结果如下:
['images\1.gif', 'images\1.png', 'images\2.gif', 'images\2.png', 'images\3.png',]
上面用到的glob.glob()返回的是符合匹配条件的所有文件的路径,而glob.iglob()返回的是一个迭代对象,需要循环遍历获取每个元素之后得到符合匹配条件的所有文件的路径。
pprint
pprint模块提供了“美化打印”任意Python数据结构的功能,方便使用者阅读,要是用普通的print来打印的话,如下:
nested = [list("abcs"), list("sdff"), [1, 45, 4, 6, 7, 8], list(range(12))] print(nested)
output
[['a', 'b', 'c', 's'], ['s', 'd', 'f', 'f'], [1, 45, 4, 6, 7, 8], [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]]
而用pprint模块来打印的话,如下:
from pprint import pprint pprint(nested)
output
[['a', 'b', 'c', 's'], ['s', 'd', 'f', 'f'], [1, 45, 4, 6, 7, 8], [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]]
我们还能够对键值对类型的数据进行格式化的输出,代码如下:
import json import pprint from urllib.request import urlopen with urlopen('https://pypi.org/pypi/sampleproject/json') as resp: project_info = json.load(resp)['info'] pprint.pprint(project_info)
output
{'author': 'A. Random Developer', 'author_email': 'author@example.com', 'bugtrack_url': None, 'classifiers': [.......], 'description': [.......], 'description_content_type': 'text/markdown', 'docs_url': None, 'download_url': '', 'downloads': {.........}, 'home_page': 'https://github.com/pypa/sampleproject', 'keywords': 'sample setuptools development', 'license': '', 'maintainer': '', 'maintainer_email': '', 'name': 'sampleproject', 'package_url': 'https://pypi.org/project/sampleproject/', 'platform': '', 'project_url': 'https://pypi.org/project/sampleproject/', 'project_urls': .........., 'requires_dist': [..........], 'requires_python': '>=3.5, <4', 'summary': 'A sample Python project', 'version': '2.0.0', 'yanked': False, 'yanked_reason': None}
statistics
Python当中的statistics模块提供了更加完善的数据统计操作,例如对中位数的计算就提供了median_low()、median_high()两种方法,分别来计算数据的低中位数(偶数个样本时取中间两个数的较小者),代码如下:
statistics.median_low([1,3,5,7])
output
3
和高中位数(偶数个样本时取中间两个数的较大者),代码如下:
statistics.median_high([1,3,5,7])
output
5
除此之外,例如平均数、众数、标准差、方差等等都能够计算,例如:
x1 = statistics.mode([1,1,2,3,4,3,3,3,3]) print(x1) x2 = statistics.mode(["a","b","c","d","d","a","a",]) print(x2)
output
3 a
calendar
Python当中的日历模块提供了对日期的一系列操作方法,并且可以生成日历,代码如下:
import calendar print(calendar.calendar(2022))
output
2022 January February March Mo Tu We Th Fr Sa SuMo Tu We Th Fr Sa SuMo Tu We Th Fr Sa Su 12123456123456 3456789 789 10 11 12 13 789 10 11 12 13 10 11 12 13 14 15 1614 15 16 17 18 19 2014 15 16 17 18 19 20 17 18 19 20 21 22 2321 22 23 24 25 26 2721 22 23 24 25 26 27 24 25 26 27 28 29 302828 29 30 31 31 AprilMay June Mo Tu We Th Fr Sa SuMo Tu We Th Fr Sa SuMo Tu We Th Fr Sa Su 123 1 12345 456789 10 2345678 6789 10 11 12 11 12 13 14 15 16 17 9 10 11 12 13 14 1513 14 15 16 17 18 19 18 19 20 21 22 23 2416 17 18 19 20 21 2220 21 22 23 24 25 26 25 26 27 28 29 30 23 24 25 26 27 28 2927 28 29 30 30 31 ......
当然我们也可以打印出某一个月份的日历,代码如下:
import calendar print(calendar.month(2022, 3))
output
March 2022 Mo Tu We Th Fr Sa Su 123456 789 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
calendar.isleap(year)是闰年则返回True,否则返回False,例如:
import calendar print(calendar.isleap(2022))
output
False
The above is the detailed content of It's so useful! Share these built-in Python modules!. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics



You can learn basic programming concepts and skills of Python within 2 hours. 1. Learn variables and data types, 2. Master control flow (conditional statements and loops), 3. Understand the definition and use of functions, 4. Quickly get started with Python programming through simple examples and code snippets.

Python is widely used in the fields of web development, data science, machine learning, automation and scripting. 1) In web development, Django and Flask frameworks simplify the development process. 2) In the fields of data science and machine learning, NumPy, Pandas, Scikit-learn and TensorFlow libraries provide strong support. 3) In terms of automation and scripting, Python is suitable for tasks such as automated testing and system management.

It is impossible to view MongoDB password directly through Navicat because it is stored as hash values. How to retrieve lost passwords: 1. Reset passwords; 2. Check configuration files (may contain hash values); 3. Check codes (may hardcode passwords).

As a data professional, you need to process large amounts of data from various sources. This can pose challenges to data management and analysis. Fortunately, two AWS services can help: AWS Glue and Amazon Athena.

The steps to start a Redis server include: Install Redis according to the operating system. Start the Redis service via redis-server (Linux/macOS) or redis-server.exe (Windows). Use the redis-cli ping (Linux/macOS) or redis-cli.exe ping (Windows) command to check the service status. Use a Redis client, such as redis-cli, Python, or Node.js, to access the server.

To read a queue from Redis, you need to get the queue name, read the elements using the LPOP command, and process the empty queue. The specific steps are as follows: Get the queue name: name it with the prefix of "queue:" such as "queue:my-queue". Use the LPOP command: Eject the element from the head of the queue and return its value, such as LPOP queue:my-queue. Processing empty queues: If the queue is empty, LPOP returns nil, and you can check whether the queue exists before reading the element.

Question: How to view the Redis server version? Use the command line tool redis-cli --version to view the version of the connected server. Use the INFO server command to view the server's internal version and need to parse and return information. In a cluster environment, check the version consistency of each node and can be automatically checked using scripts. Use scripts to automate viewing versions, such as connecting with Python scripts and printing version information.

Navicat's password security relies on the combination of symmetric encryption, password strength and security measures. Specific measures include: using SSL connections (provided that the database server supports and correctly configures the certificate), regularly updating Navicat, using more secure methods (such as SSH tunnels), restricting access rights, and most importantly, never record passwords.
