


Baidu Chief Technology Officer Wang Haifeng: The goal of artificial intelligence is not to equal human intelligence
The artificial intelligence chat robot ChatGPT is popular around the world; Baidu Knowledge strengthens the open user testing of "Wenxinyiyi" in major languages; the artificial intelligence drawing tool Midjourney launches the fifth commercial version; the artificial intelligence big data tool "Tong" independently developed by Alibaba Cloud "Yiqianwen" began to invite users to try it; the "Pangu" artificial intelligence big data platform on Huawei Cloud launched a series of application recommendation instructions.
Recently, Wang Haifeng, chief technology officer of Baidu and director of the National Engineering Research Center for Deep Learning Technology and Application, showed a hint of pride when talking about "Wen Xin Yi Yu", which is still in the testing period: " Since the launch of the first version in 2019, "Wenxin" has formed a complete set of industrial knowledge enhancement model systems, covering natural language processing, vision, cross-modal, biological computing, industry and other fields. At the same time, It also contains many of our own technologies and has been widely used in the industry."
Although as a member of the "Wenxin" company, he has mastered trillions of knowledge through artificial intelligence technology, Wang Haifeng still emphasized: "This company has only been in this company for a month, and I have been studying hard. Continuous improvement and real user feedback are a very valuable product for us and allow us to grow faster."
Artificial intelligence technology has been integrated into social production and people's lives more and more rapidly and deeply. The excellent performance of large language models with generative artificial intelligence as the main feature in solving real problems has made It has attracted worldwide attention but has also heightened anxiety and worry.
As for whether the jobs that the public is concerned about will be replaced by artificial intelligence, Wang Haifeng believes that with the popularization of artificial intelligence technology, some jobs may be replaced by artificial intelligence, but it will not create too much employment. Pressure, because in every technological revolution and industrial change in the past two hundred years, some jobs will be replaced, but new jobs will also be created.
With the continuous improvement of intelligence, once it is used by some people with ulterior motives, it will cause huge damage.
All products will encounter such problems. When the number of users reaches a certain level, this is Wang Haifeng's point of view. We have formulated strict regulatory measures in accordance with national regulations to ensure the safety of every step. ”
Recently, NICO released the "Draft for Comments on Generative Artificial Intelligence Service Management Measures", which clearly stipulates the research and application, supervision and punishment of this type of technology.
Wang Haifeng continued: "While scientific and technological progress brings benefits to society, it also brings hidden dangers to society. This requires us to have sufficient technical precautions, it is necessary to formulate relevant systems, and it is necessary to allow the entire industry to Even the entire society needs to be involved, so as to ensure that our technology has value and is not abused."
What impact will the development of artificial intelligence have on human beings? Do you have self-awareness? Will he become the master of mankind in the future?
"Smart technology like Wen Xin Yiyu is, in the final analysis, just a tool created by humans. It is just for people to have more value. There is no difference between good and bad, and there is no difference between them." There is no such thing as good or bad." Wang Haifeng continued, "In some aspects, artificial intelligence has surpassed humans, but it does not represent human wisdom, just like human satellites do not represent human intelligence. Human intelligence. I think it is impossible for an artificial intelligence to have human thinking."
The above is the detailed content of Baidu Chief Technology Officer Wang Haifeng: The goal of artificial intelligence is not to equal human intelligence. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics



This site reported on June 27 that Jianying is a video editing software developed by FaceMeng Technology, a subsidiary of ByteDance. It relies on the Douyin platform and basically produces short video content for users of the platform. It is compatible with iOS, Android, and Windows. , MacOS and other operating systems. Jianying officially announced the upgrade of its membership system and launched a new SVIP, which includes a variety of AI black technologies, such as intelligent translation, intelligent highlighting, intelligent packaging, digital human synthesis, etc. In terms of price, the monthly fee for clipping SVIP is 79 yuan, the annual fee is 599 yuan (note on this site: equivalent to 49.9 yuan per month), the continuous monthly subscription is 59 yuan per month, and the continuous annual subscription is 499 yuan per year (equivalent to 41.6 yuan per month) . In addition, the cut official also stated that in order to improve the user experience, those who have subscribed to the original VIP

Improve developer productivity, efficiency, and accuracy by incorporating retrieval-enhanced generation and semantic memory into AI coding assistants. Translated from EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG, author JanakiramMSV. While basic AI programming assistants are naturally helpful, they often fail to provide the most relevant and correct code suggestions because they rely on a general understanding of the software language and the most common patterns of writing software. The code generated by these coding assistants is suitable for solving the problems they are responsible for solving, but often does not conform to the coding standards, conventions and styles of the individual teams. This often results in suggestions that need to be modified or refined in order for the code to be accepted into the application

Large Language Models (LLMs) are trained on huge text databases, where they acquire large amounts of real-world knowledge. This knowledge is embedded into their parameters and can then be used when needed. The knowledge of these models is "reified" at the end of training. At the end of pre-training, the model actually stops learning. Align or fine-tune the model to learn how to leverage this knowledge and respond more naturally to user questions. But sometimes model knowledge is not enough, and although the model can access external content through RAG, it is considered beneficial to adapt the model to new domains through fine-tuning. This fine-tuning is performed using input from human annotators or other LLM creations, where the model encounters additional real-world knowledge and integrates it

To learn more about AIGC, please visit: 51CTOAI.x Community https://www.51cto.com/aigc/Translator|Jingyan Reviewer|Chonglou is different from the traditional question bank that can be seen everywhere on the Internet. These questions It requires thinking outside the box. Large Language Models (LLMs) are increasingly important in the fields of data science, generative artificial intelligence (GenAI), and artificial intelligence. These complex algorithms enhance human skills and drive efficiency and innovation in many industries, becoming the key for companies to remain competitive. LLM has a wide range of applications. It can be used in fields such as natural language processing, text generation, speech recognition and recommendation systems. By learning from large amounts of data, LLM is able to generate text

Editor |ScienceAI Question Answering (QA) data set plays a vital role in promoting natural language processing (NLP) research. High-quality QA data sets can not only be used to fine-tune models, but also effectively evaluate the capabilities of large language models (LLM), especially the ability to understand and reason about scientific knowledge. Although there are currently many scientific QA data sets covering medicine, chemistry, biology and other fields, these data sets still have some shortcomings. First, the data form is relatively simple, most of which are multiple-choice questions. They are easy to evaluate, but limit the model's answer selection range and cannot fully test the model's ability to answer scientific questions. In contrast, open-ended Q&A

Machine learning is an important branch of artificial intelligence that gives computers the ability to learn from data and improve their capabilities without being explicitly programmed. Machine learning has a wide range of applications in various fields, from image recognition and natural language processing to recommendation systems and fraud detection, and it is changing the way we live. There are many different methods and theories in the field of machine learning, among which the five most influential methods are called the "Five Schools of Machine Learning". The five major schools are the symbolic school, the connectionist school, the evolutionary school, the Bayesian school and the analogy school. 1. Symbolism, also known as symbolism, emphasizes the use of symbols for logical reasoning and expression of knowledge. This school of thought believes that learning is a process of reverse deduction, through existing

Editor | KX In the field of drug research and development, accurately and effectively predicting the binding affinity of proteins and ligands is crucial for drug screening and optimization. However, current studies do not take into account the important role of molecular surface information in protein-ligand interactions. Based on this, researchers from Xiamen University proposed a novel multi-modal feature extraction (MFE) framework, which for the first time combines information on protein surface, 3D structure and sequence, and uses a cross-attention mechanism to compare different modalities. feature alignment. Experimental results demonstrate that this method achieves state-of-the-art performance in predicting protein-ligand binding affinities. Furthermore, ablation studies demonstrate the effectiveness and necessity of protein surface information and multimodal feature alignment within this framework. Related research begins with "S

According to news from this site on August 1, SK Hynix released a blog post today (August 1), announcing that it will attend the Global Semiconductor Memory Summit FMS2024 to be held in Santa Clara, California, USA from August 6 to 8, showcasing many new technologies. generation product. Introduction to the Future Memory and Storage Summit (FutureMemoryandStorage), formerly the Flash Memory Summit (FlashMemorySummit) mainly for NAND suppliers, in the context of increasing attention to artificial intelligence technology, this year was renamed the Future Memory and Storage Summit (FutureMemoryandStorage) to invite DRAM and storage vendors and many more players. New product SK hynix launched last year
