Home > Database > Redis > How to use Go+Redis to implement common current limiting algorithms

How to use Go+Redis to implement common current limiting algorithms

PHPz
Release: 2023-05-27 23:16:40
forward
912 people have browsed it

    Fixed window

    Using Redis to implement a fixed window is relatively simple, mainly because there will only be one fixed window at the same time, so we can When entering the window, use the pexpire command to set the expiration time to the window time size, so that the window will expire with the expiration time. At the same time, we use the incr command to increase the window count.

    Because we need to set the expiration time of the window when counter==1, in order to ensure atomicity, we use a simple Lua script implementation.

    const fixedWindowLimiterTryAcquireRedisScript = `
    -- ARGV[1]: 窗口时间大小
    -- ARGV[2]: 窗口请求上限
    
    local window = tonumber(ARGV[1])
    local limit = tonumber(ARGV[2])
    
    -- 获取原始值
    local counter = tonumber(redis.call("get", KEYS[1]))
    if counter == nil then 
       counter = 0
    end
    -- 若到达窗口请求上限,请求失败
    if counter >= limit then
       return 0
    end
    -- 窗口值+1
    redis.call("incr", KEYS[1])
    if counter == 0 then
        redis.call("pexpire", KEYS[1], window)
    end
    return 1
    `
    Copy after login
    rrree

    Sliding window

    hash implementation

    We use Redis’s hash to store the count of each small window, and each request will store all The count of valid windows is accumulated to count, use hdel to delete the invalid windows, and finally determine whether the total count of windows is greater than the upper limit.

    We basically put all the logic into the Lua script, where the big head is the traversal of hash, the time complexity is O(N), N is the number of small windows, so It is best not to have too many small windows.

    package redis
    
    import (
       "context"
       "errors"
       "github.com/go-redis/redis/v8"
       "time"
    )
    
    // FixedWindowLimiter 固定窗口限流器
    type FixedWindowLimiter struct {
       limit  int           // 窗口请求上限
       window int           // 窗口时间大小
       client *redis.Client // Redis客户端
       script *redis.Script // TryAcquire脚本
    }
    
    func NewFixedWindowLimiter(client *redis.Client, limit int, window time.Duration) (*FixedWindowLimiter, error) {
       // redis过期时间精度最大到毫秒,因此窗口必须能被毫秒整除
       if window%time.Millisecond != 0 {
          return nil, errors.New("the window uint must not be less than millisecond")
       }
    
       return &FixedWindowLimiter{
          limit:  limit,
          window: int(window / time.Millisecond),
          client: client,
          script: redis.NewScript(fixedWindowLimiterTryAcquireRedisScript),
       }, nil
    }
    
    func (l *FixedWindowLimiter) TryAcquire(ctx context.Context, resource string) error {
       success, err := l.script.Run(ctx, l.client, []string{resource}, l.window, l.limit).Bool()
       if err != nil {
          return err
       }
       // 若到达窗口请求上限,请求失败
       if !success {
          return ErrAcquireFailed
       }
       return nil
    }
    Copy after login
    const slidingWindowLimiterTryAcquireRedisScriptHashImpl = `
    -- ARGV[1]: 窗口时间大小
    -- ARGV[2]: 窗口请求上限
    -- ARGV[3]: 当前小窗口值
    -- ARGV[4]: 起始小窗口值
    
    local window = tonumber(ARGV[1])
    local limit = tonumber(ARGV[2])
    local currentSmallWindow = tonumber(ARGV[3])
    local startSmallWindow = tonumber(ARGV[4])
    
    -- 计算当前窗口的请求总数
    local counters = redis.call("hgetall", KEYS[1])
    local count = 0
    for i = 1, #(counters) / 2 do 
       local smallWindow = tonumber(counters[i * 2 - 1])
       local counter = tonumber(counters[i * 2])
       if smallWindow < startSmallWindow then
          redis.call("hdel", KEYS[1], smallWindow)
       else 
          count = count + counter
       end
    end
    
    -- 若到达窗口请求上限,请求失败
    if count >= limit then
       return 0
    end
    
    -- 若没到窗口请求上限,当前小窗口计数器+1,请求成功
    redis.call("hincrby", KEYS[1], currentSmallWindow, 1)
    redis.call("pexpire", KEYS[1], window)
    return 1
    `
    Copy after login

    list implementation

    If the number of small windows is particularly large, you can use list to optimize the time complexity. The structure of the list is:

    [counter, smallWindow1, count1, smallWindow2, count2, smallWindow3, count3...]

    That is, we use the first element of the list to store the counter, and each window is represented by two elements. One element represents the small window value, and the second element represents the count of this small window. Since the Redis Lua script does not support the string splitting function, the value and count of the small window cannot be placed in the same element.

    Specific operation process:

    1. Get the length of the list

    2. If the length is 0, set counter, the length is 1

    3. If the length is greater than 1. Get the second and third elements

    If the value is less than the starting small window value, counter-the value of the third element, delete the second and third elements, length-2

    4. If counter is greater than or equal to limit, the request fails

    5. If the length is greater than 1, get the second to last element

    • If the second to last element The small window value is greater than or equal to the current small window value, which means that due to network delay, the window has expired when the current request reaches the server. The penultimate element is regarded as the current small window (because it is updated), and the penultimate element is regarded as the current small window (because it is updated). Value 1

    • Otherwise, add new window value, add new count (1), update expiration time

    6. Otherwise, add New window value, add new count (1), update expiration time

    7.counter 1

    8.Return successful

    package redis
    
    import (
       "context"
       "errors"
       "github.com/go-redis/redis/v8"
       "time"
    )
    
    // SlidingWindowLimiter 滑动窗口限流器
    type SlidingWindowLimiter struct {
       limit        int           // 窗口请求上限
       window       int64         // 窗口时间大小
       smallWindow  int64         // 小窗口时间大小
       smallWindows int64         // 小窗口数量
       client       *redis.Client // Redis客户端
       script       *redis.Script // TryAcquire脚本
    }
    
    func NewSlidingWindowLimiter(client *redis.Client, limit int, window, smallWindow time.Duration) (
       *SlidingWindowLimiter, error) {
       // redis过期时间精度最大到毫秒,因此窗口必须能被毫秒整除
       if window%time.Millisecond != 0 || smallWindow%time.Millisecond != 0 {
          return nil, errors.New("the window uint must not be less than millisecond")
       }
    
       // 窗口时间必须能够被小窗口时间整除
       if window%smallWindow != 0 {
          return nil, errors.New("window cannot be split by integers")
       }
    
       return &SlidingWindowLimiter{
          limit:        limit,
          window:       int64(window / time.Millisecond),
          smallWindow:  int64(smallWindow / time.Millisecond),
          smallWindows: int64(window / smallWindow),
          client:       client,
          script:       redis.NewScript(slidingWindowLimiterTryAcquireRedisScriptHashImpl),
       }, nil
    }
    
    func (l *SlidingWindowLimiter) TryAcquire(ctx context.Context, resource string) error {
       // 获取当前小窗口值
       currentSmallWindow := time.Now().UnixMilli() / l.smallWindow * l.smallWindow
       // 获取起始小窗口值
       startSmallWindow := currentSmallWindow - l.smallWindow*(l.smallWindows-1)
    
       success, err := l.script.Run(
          ctx, l.client, []string{resource}, l.window, l.limit, currentSmallWindow, startSmallWindow).Bool()
       if err != nil {
          return err
       }
       // 若到达窗口请求上限,请求失败
       if !success {
          return ErrAcquireFailed
       }
       return nil
    }
    Copy after login

    Algorithms are all operations listHead or tail, so the time complexity is close to O(1)

    Leaky bucket algorithm

    The leaky bucket needs to save the current water level and the last water release time, so we use hash to save these two values.

    const slidingWindowLimiterTryAcquireRedisScriptListImpl = `
    -- ARGV[1]: 窗口时间大小
    -- ARGV[2]: 窗口请求上限
    -- ARGV[3]: 当前小窗口值
    -- ARGV[4]: 起始小窗口值
    
    local window = tonumber(ARGV[1])
    local limit = tonumber(ARGV[2])
    local currentSmallWindow = tonumber(ARGV[3])
    local startSmallWindow = tonumber(ARGV[4])
    
    -- 获取list长度
    local len = redis.call("llen", KEYS[1])
    -- 如果长度是0,设置counter,长度+1
    local counter = 0
    if len == 0 then 
       redis.call("rpush", KEYS[1], 0)
       redis.call("pexpire", KEYS[1], window)
       len = len + 1
    else
       -- 如果长度大于1,获取第二第个元素
       local smallWindow1 = tonumber(redis.call("lindex", KEYS[1], 1))
       counter = tonumber(redis.call("lindex", KEYS[1], 0))
       -- 如果该值小于起始小窗口值
       if smallWindow1 < startSmallWindow then 
          local count1 = redis.call("lindex", KEYS[1], 2)
          -- counter-第三个元素的值
          counter = counter - count1
          -- 长度-2
          len = len - 2
          -- 删除第二第三个元素
          redis.call("lrem", KEYS[1], 1, smallWindow1)
          redis.call("lrem", KEYS[1], 1, count1)
       end
    end
    
    -- 若到达窗口请求上限,请求失败
    if counter >= limit then 
       return 0
    end 
    
    -- 如果长度大于1,获取倒数第二第一个元素
    if len > 1 then
       local smallWindown = tonumber(redis.call("lindex", KEYS[1], -2))
       -- 如果倒数第二个元素小窗口值大于等于当前小窗口值
       if smallWindown >= currentSmallWindow then
          -- 把倒数第二个元素当成当前小窗口(因为它更新),倒数第一个元素值+1
          local countn = redis.call("lindex", KEYS[1], -1)
          redis.call("lset", KEYS[1], -1, countn + 1)
       else 
          -- 否则,添加新的窗口值,添加新的计数(1),更新过期时间
          redis.call("rpush", KEYS[1], currentSmallWindow, 1)
          redis.call("pexpire", KEYS[1], window)
       end
    else 
       -- 否则,添加新的窗口值,添加新的计数(1),更新过期时间
       redis.call("rpush", KEYS[1], currentSmallWindow, 1)
       redis.call("pexpire", KEYS[1], window)
    end 
    
    -- counter + 1并更新
    redis.call("lset", KEYS[1], 0, counter + 1)
    return 1
    `
    Copy after login
    const leakyBucketLimiterTryAcquireRedisScript = `
    -- ARGV[1]: 最高水位
    -- ARGV[2]: 水流速度/秒
    -- ARGV[3]: 当前时间(秒)
    
    local peakLevel = tonumber(ARGV[1])
    local currentVelocity = tonumber(ARGV[2])
    local now = tonumber(ARGV[3])
    
    local lastTime = tonumber(redis.call("hget", KEYS[1], "lastTime"))
    local currentLevel = tonumber(redis.call("hget", KEYS[1], "currentLevel"))
    -- 初始化
    if lastTime == nil then 
       lastTime = now
       currentLevel = 0
       redis.call("hmset", KEYS[1], "currentLevel", currentLevel, "lastTime", lastTime)
    end 
    
    -- 尝试放水
    -- 距离上次放水的时间
    local interval = now - lastTime
    if interval > 0 then
       -- 当前水位-距离上次放水的时间(秒)*水流速度
       local newLevel = currentLevel - interval * currentVelocity
       if newLevel < 0 then 
          newLevel = 0
       end 
       currentLevel = newLevel
       redis.call("hmset", KEYS[1], "currentLevel", newLevel, "lastTime", now)
    end
    
    -- 若到达最高水位,请求失败
    if currentLevel >= peakLevel then
       return 0
    end
    -- 若没有到达最高水位,当前水位+1,请求成功
    redis.call("hincrby", KEYS[1], "currentLevel", 1)
    redis.call("expire", KEYS[1], peakLevel / currentVelocity)
    return 1
    `
    Copy after login

    Token Bucket

    Token bucket can be regarded as the opposite algorithm of leaky bucket. One of them is to pour water into the bucket, and the other is to obtain tokens from the bucket.

    package redis
    
    import (
       "context"
       "github.com/go-redis/redis/v8"
       "time"
    )
    
    // LeakyBucketLimiter 漏桶限流器
    type LeakyBucketLimiter struct {
       peakLevel       int           // 最高水位
       currentVelocity int           // 水流速度/秒
       client          *redis.Client // Redis客户端
       script          *redis.Script // TryAcquire脚本
    }
    
    func NewLeakyBucketLimiter(client *redis.Client, peakLevel, currentVelocity int) *LeakyBucketLimiter {
       return &LeakyBucketLimiter{
          peakLevel:       peakLevel,
          currentVelocity: currentVelocity,
          client:          client,
          script:          redis.NewScript(leakyBucketLimiterTryAcquireRedisScript),
       }
    }
    
    func (l *LeakyBucketLimiter) TryAcquire(ctx context.Context, resource string) error {
       // 当前时间
       now := time.Now().Unix()
       success, err := l.script.Run(ctx, l.client, []string{resource}, l.peakLevel, l.currentVelocity, now).Bool()
       if err != nil {
          return err
       }
       // 若到达窗口请求上限,请求失败
       if !success {
          return ErrAcquireFailed
       }
       return nil
    }
    Copy after login
    const tokenBucketLimiterTryAcquireRedisScript = `
    -- ARGV[1]: 容量
    -- ARGV[2]: 发放令牌速率/秒
    -- ARGV[3]: 当前时间(秒)
    
    local capacity = tonumber(ARGV[1])
    local rate = tonumber(ARGV[2])
    local now = tonumber(ARGV[3])
    
    local lastTime = tonumber(redis.call("hget", KEYS[1], "lastTime"))
    local currentTokens = tonumber(redis.call("hget", KEYS[1], "currentTokens"))
    -- 初始化
    if lastTime == nil then 
       lastTime = now
       currentTokens = capacity
       redis.call("hmset", KEYS[1], "currentTokens", currentTokens, "lastTime", lastTime)
    end 
    
    -- 尝试发放令牌
    -- 距离上次发放令牌的时间
    local interval = now - lastTime
    if interval > 0 then
       -- 当前令牌数量+距离上次发放令牌的时间(秒)*发放令牌速率
       local newTokens = currentTokens + interval * rate
       if newTokens > capacity then 
          newTokens = capacity
       end 
       currentTokens = newTokens
       redis.call("hmset", KEYS[1], "currentTokens", newTokens, "lastTime", now)
    end
    
    -- 如果没有令牌,请求失败
    if currentTokens == 0 then
       return 0
    end
    -- 果有令牌,当前令牌-1,请求成功
    redis.call("hincrby", KEYS[1], "currentTokens", -1)
    redis.call("expire", KEYS[1], capacity / rate)
    return 1
    `
    Copy after login

    Sliding Log

    The algorithm process is the same as the sliding window, except that it can specify multiple strategies. At the same time, when the request fails, the caller needs to be notified which strategy was intercepted.

    package redis
    
    import (
       "context"
       "github.com/go-redis/redis/v8"
       "time"
    )
    
    // TokenBucketLimiter 令牌桶限流器
    type TokenBucketLimiter struct {
       capacity int           // 容量
       rate     int           // 发放令牌速率/秒
       client   *redis.Client // Redis客户端
       script   *redis.Script // TryAcquire脚本
    }
    
    func NewTokenBucketLimiter(client *redis.Client, capacity, rate int) *TokenBucketLimiter {
       return &TokenBucketLimiter{
          capacity: capacity,
          rate:     rate,
          client:   client,
          script:   redis.NewScript(tokenBucketLimiterTryAcquireRedisScript),
       }
    }
    
    func (l *TokenBucketLimiter) TryAcquire(ctx context.Context, resource string) error {
       // 当前时间
       now := time.Now().Unix()
       success, err := l.script.Run(ctx, l.client, []string{resource}, l.capacity, l.rate, now).Bool()
       if err != nil {
          return err
       }
       // 若到达窗口请求上限,请求失败
       if !success {
          return ErrAcquireFailed
       }
       return nil
    }
    Copy after login
    rrree

    The above is the detailed content of How to use Go+Redis to implement common current limiting algorithms. For more information, please follow other related articles on the PHP Chinese website!

    Related labels:
    source:yisu.com
    Statement of this Website
    The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
    Popular Tutorials
    More>
    Latest Downloads
    More>
    Web Effects
    Website Source Code
    Website Materials
    Front End Template