How to use the HyperLogLog data type in Redis
1. Principle of HyperLogLog
Redis HyperLogLog uses a probability algorithm, the HyperLogLog algorithm, to estimate the cardinality. Using a set of hash functions and a bit array of length m, HyperLogLog is able to estimate the number of unique elements in a set.
In the HyperLogLog algorithm, each element is hashed, and after converting the hash value into binary, each element is scored according to the number of 1's in the binary string prefix. For example, if the hash value of an element is 01110100011, then the number of 1's in the prefix is 3, so in the HyperLogLog algorithm, the score of this element is 3.
After counting the scores of all elements, take the reciprocal of each score (1 / 2^n), then add these reciprocals and take the reciprocal, and you will get a cardinality estimate, which is HyperLogLog The estimation results of the algorithm.
The HyperLogLog algorithm trades off the size of the length m of the bit array, compromising the memory occupied by the data structure and the accuracy of the estimated value (i.e., the estimated error), and obtains the result between the space occupied by the data and the smaller degree of error. perfect balance.
In short, the core idea of the HyperLogLog algorithm is based on hash functions and bit operations. By converting the hash value into a bit stream and counting the number of leading 0s, it can quickly estimate the unique value in a large data set. quantity. Using the hyperloglog algorithm, we are able to quickly identify duplicate web pages in very large datasets.
2. Usage steps:
Redis HyperLogLog is a data structure that can be used to estimate the number of elements in a collection. It can maintain massive amounts of data by using very little memory. It is more accurate than conventional estimation algorithms and very fast when processing large amounts of data.
A simple example, we can use HyperLogLog to calculate the number of independent IPs visiting the website. Specifically, you can follow the following steps:
First create a HyperLogLog data structure:
PFADD hll:unique_ips 127.0.0.1
Add the ip for each access to the unique_ips data structure:
PFADD hll:unique_ips 192.168.1.1
Get an approximation of the number of elements in the calculated collection:
PFCOUNT hll:unique_ips
- ##You can pass multiple HyperLogLog structures (such as by day or hour) to get a more accurate count.
<dependency> <groupId>redis.clients</groupId> <artifactId>jedis</artifactId> <version>3.6.0</version> </dependency>
Jedis jedis = new Jedis("localhost");
jedis.pfadd("hll:unique_ips", "127.0.0.1");
Long count = jedis.pfcount("hll:unique_ips"); System.out.println(count);
PFMERGE command to merge the HyperLogLog data structure:
jedis.pfmerge("hll:unique_ips", "hll:unique_ips1", "hll:unique_ips2", "hll:unique_ips3");
Config config = new Config(); config.useSingleServer().setAddress("redis://localhost:6379"); RedissonClient redisson = Redisson.create(config);
RHyperLogLog<String> uniqueIps = redisson.getHyperLogLog("hll:unique_ips");
uniqueIps.add("127.0.0.1");
long approximateCount = uniqueIps.count(); System.out.println(approximateCount);
RHyperLogLog<String> uniqueIps1 = redisson.getHyperLogLog("hll:unique_ips1"); RHyperLogLog<String> uniqueIps2 = redisson.getHyperLogLog("hll:unique_ips2"); uniqueIps.mergeWith(uniqueIps1, uniqueIps2);
- The accuracy is low, but it takes up very little memory.
- Supports inserting new elements without double counting.
- Provides instructions to optimize memory usage and counting accuracy. For example, PFADD, PFCOUNT, PFMERGE and other instructions.
- Be able to estimate the number of different elements in a data set, that is, the cardinality of the set.
- Supports merging operations on multiple HyperLogLog objects to obtain an approximation of the total cardinality of these collections.
- PFADD key element [element ...]: Add one or more elements to the HyperLogLog structure.
- PFCOUNT key [key ...]: Get the cardinality estimate of one or more HyperLogLog structures.
- PFMERGE destkey sourcekey [sourcekey ...]: Merge one or more HyperLogLog structures into a target structure.
- PFSELFTEST [numtests]: Test HyperLogLog valuation performance and accuracy (only for Redis4.0 version)
Count Page Views - In web applications, HyperLogLog can be used to count how many unique visitors there are for each page. Use HyperLogLog technology to calculate the average number of visits to this page across different time periods.
HyperLogLog has significant utility in analyzing the number of users in big data collections. A probability-based data structure is particularly effective when dealing with data sets such as unique user IDs. HyperLogLog only saves a limited number of hash values after hashing and is able to deduce the size of the data set.
Count advertising clicks - For advertising analysis on a website or application, HyperLogLog can be used to capture the number of effective clicks, that is, the number of distinct or unique clicks.
The above is the detailed content of How to use the HyperLogLog data type in Redis. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics



Redis cluster mode deploys Redis instances to multiple servers through sharding, improving scalability and availability. The construction steps are as follows: Create odd Redis instances with different ports; Create 3 sentinel instances, monitor Redis instances and failover; configure sentinel configuration files, add monitoring Redis instance information and failover settings; configure Redis instance configuration files, enable cluster mode and specify the cluster information file path; create nodes.conf file, containing information of each Redis instance; start the cluster, execute the create command to create a cluster and specify the number of replicas; log in to the cluster to execute the CLUSTER INFO command to verify the cluster status; make

Using the Redis directive requires the following steps: Open the Redis client. Enter the command (verb key value). Provides the required parameters (varies from instruction to instruction). Press Enter to execute the command. Redis returns a response indicating the result of the operation (usually OK or -ERR).

How to clear Redis data: Use the FLUSHALL command to clear all key values. Use the FLUSHDB command to clear the key value of the currently selected database. Use SELECT to switch databases, and then use FLUSHDB to clear multiple databases. Use the DEL command to delete a specific key. Use the redis-cli tool to clear the data.

Redis uses a single threaded architecture to provide high performance, simplicity, and consistency. It utilizes I/O multiplexing, event loops, non-blocking I/O, and shared memory to improve concurrency, but with limitations of concurrency limitations, single point of failure, and unsuitable for write-intensive workloads.

The best way to understand Redis source code is to go step by step: get familiar with the basics of Redis. Select a specific module or function as the starting point. Start with the entry point of the module or function and view the code line by line. View the code through the function call chain. Be familiar with the underlying data structures used by Redis. Identify the algorithm used by Redis.

To read a queue from Redis, you need to get the queue name, read the elements using the LPOP command, and process the empty queue. The specific steps are as follows: Get the queue name: name it with the prefix of "queue:" such as "queue:my-queue". Use the LPOP command: Eject the element from the head of the queue and return its value, such as LPOP queue:my-queue. Processing empty queues: If the queue is empty, LPOP returns nil, and you can check whether the queue exists before reading the element.

To view all keys in Redis, there are three ways: use the KEYS command to return all keys that match the specified pattern; use the SCAN command to iterate over the keys and return a set of keys; use the INFO command to get the total number of keys.

Redis uses hash tables to store data and supports data structures such as strings, lists, hash tables, collections and ordered collections. Redis persists data through snapshots (RDB) and append write-only (AOF) mechanisms. Redis uses master-slave replication to improve data availability. Redis uses a single-threaded event loop to handle connections and commands to ensure data atomicity and consistency. Redis sets the expiration time for the key and uses the lazy delete mechanism to delete the expiration key.
