Use the import wizard function of the navicat tool. This software can support a variety of file formats, and can automatically create tables based on file fields or insert data into existing tables, which is very fast and convenient.
test Data: csv format, about 12 million rows
import pandas as pd data = pd.read_csv('./tianchi_mobile_recommend_train_user.csv') data.shape
Print results:
##Method 1:python ➕ pymysql library
Install pymysql command:
pip install pymysql
Code implementation:
import pymysql # 数据库连接信息 conn = pymysql.connect( host='127.0.0.1', user='root', passwd='wangyuqing', db='test01', port = 3306, charset="utf8") # 分块处理 big_size = 100000 # 分块遍历写入到 mysql with pd.read_csv('./tianchi_mobile_recommend_train_user.csv',chunksize=big_size) as reader: for df in reader: datas = [] print('处理:',len(df)) # print(df) for i ,j in df.iterrows(): data = (j['user_id'],j['item_id'],j['behavior_type'], j['item_category'],j['time']) datas.append(data) _values = ",".join(['%s', ] * 5) sql = """insert into users(user_id,item_id,behavior_type ,item_category,time) values(%s)""" % _values cursor = conn.cursor() cursor.executemany(sql,datas) conn.commit() # 关闭服务 conn.close() cursor.close() print('存入成功!')
Method 2: pandas ➕ sqlalchemy: pandas needs to introduce sqlalchemy to support sql. With the support of sqlalchemy, it can implement queries, updates and other operations of all common database types.
Code implementation:
from sqlalchemy import create_engine engine = create_engine('mysql+pymysql://root:wangyuqing@localhost:3306/test01') data = pd.read_csv('./tianchi_mobile_recommend_train_user.csv') data.to_sql('user02',engine,chunksize=100000,index=None) print('存入成功!')
The three most complete methods of storing data into the MySQL database:
The above is the detailed content of How to use Python to read tens of millions of data and automatically write it to a MySQL database. For more information, please follow other related articles on the PHP Chinese website!