Home Backend Development Python Tutorial What is the EM algorithm in Python?

What is the EM algorithm in Python?

Jun 05, 2023 am 08:51 AM
python statistics em algorithm

The EM algorithm in Python is an iterative method based on maximum likelihood estimation, which is commonly used for parameter estimation problems in unsupervised learning. This article will introduce the definition, basic principles, application scenarios and Python implementation of the EM algorithm.

1. Definition of EM algorithm

EM algorithm is the abbreviation of Expectation-maximization Algorithm. It is an iterative algorithm designed to solve the maximum likelihood estimate given the observed data.

In the EM algorithm, it is necessary to assume that the sample data comes from a certain probability distribution, and the parameters of the distribution are unknown and need to be estimated through the EM algorithm. The EM algorithm assumes that the unknown parameters can be divided into two categories, one is observable variables and the other is unobservable variables. Through iteration, the expected value of the unobservable variable is used as the estimated value of the parameter, and then the solution is solved again until convergence.

2. Basic principles of EM algorithm

  1. E step (Expectation)

In the E step, it is necessary to calculate based on the current parameter estimates To find out the probability distribution of hidden variables, that is to find the conditional distribution of each hidden variable, which is the expected value of the hidden variable. This expected value is calculated based on the current parameter estimates.

  1. M step (Maximization)

In the M step, the current parameter values ​​need to be re-estimated based on the expected value of the latent variable calculated in the E step. This estimate is calculated based on the expected value of the latent variable calculated in step E.

  1. Update parameter values

Through the iteration of the E step and the M step, a set of parameter estimates will eventually be obtained. If the estimate converges, the algorithm ends, otherwise the iteration continues. Each iteration optimizes parameter values ​​until the optimal parameter estimate is found.

3. Application scenarios of EM algorithm

EM algorithm is widely used in the field of unsupervised learning, such as cluster analysis, model selection and hidden Markov model, etc., and has strong robustness It has the advantages of high flexibility and iterative efficiency.

For example, in clustering problems, the EM algorithm can be used for parameter estimation of Gaussian mixture models, that is, the observed data distribution is modeled as a mixture model of multiple Gaussian distributions, and the samples are grouped so that each group The data within them obey the same probability distribution. In the EM algorithm, the problem is solved by grouping the data in the E step and updating the parameters of the Gaussian distribution in the M step.

In addition, in image processing, the EM algorithm is often used in tasks such as image segmentation and image denoising.

4. Implementing EM algorithm in Python

In Python, there are many functions that can use the EM algorithm for parameter estimation, such as the EM algorithm implementation in the SciPy library and Gaussian in the scikit-learn library. Mixed model GMM, variational autoencoder VAE in TensorFlow library, etc.

The following is an introduction using the EM algorithm implementation of the SciPy library as an example. First, you need to import it into Pyhton as follows:

import scipy.stats as st
import numpy as np
Copy after login

Then, define the probability density function of a Gaussian mixture model as the optimization objective function of the EM algorithm:

def gmm_pdf(data, weights, means, covs):
    n_samples, n_features = data.shape
    pdf = np.zeros((n_samples,))
    for i in range(len(weights)):
        pdf += weights[i]*st.multivariate_normal.pdf(data, mean=means[i], cov=covs[i])
    return pdf
Copy after login

Next, define the function of the EM algorithm :

def EM(data, n_components, max_iter):
    n_samples, n_features = data.shape
    weights = np.ones((n_components,))/n_components
    means = data[np.random.choice(n_samples, n_components, replace=False)]
    covs = [np.eye(n_features) for _ in range(n_components)]

    for i in range(max_iter):
        # E步骤
        probabilities = np.zeros((n_samples, n_components))
        for j in range(n_components):
            probabilities[:,j] = weights[j]*st.multivariate_normal.pdf(data, mean=means[j], cov=covs[j])
        probabilities = (probabilities.T/probabilities.sum(axis=1)).T

        # M步骤
        weights = probabilities.mean(axis=0)
        means = np.dot(probabilities.T, data)/probabilities.sum(axis=0)[:,np.newaxis]
        for j in range(n_components):
            diff = data - means[j]
            covs[j] = np.dot(probabilities[:,j]*diff.T, diff)/probabilities[:,j].sum()

    return weights, means, covs
Copy after login

Finally, the following code can be used to test the EM algorithm:

# 生成数据
np.random.seed(1234)
n_samples = 100
x1 = np.random.multivariate_normal([0,0], [[1,0],[0,1]], int(n_samples/2))
x2 = np.random.multivariate_normal([3,5], [[1,0],[0,2]], int(n_samples/2))
data = np.vstack((x1,x2))

# 运行EM算法
weights, means, covs = EM(data, 2, 100)

# 输出结果
print('weights:', weights)
print('means:', means)
print('covs:', covs)
Copy after login

References:

[1] Xu, R. & Wunsch, D. C. (2005). Survey of clustering algorithms. IEEE Transactions on Neural Networks, 16(3), 645-678.

[2] Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent dirichlet allocation. Journal of Machine Learning Research, 3(4-5), 993-1022.

The above is the detailed content of What is the EM algorithm in Python?. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

PHP and Python: Code Examples and Comparison PHP and Python: Code Examples and Comparison Apr 15, 2025 am 12:07 AM

PHP and Python have their own advantages and disadvantages, and the choice depends on project needs and personal preferences. 1.PHP is suitable for rapid development and maintenance of large-scale web applications. 2. Python dominates the field of data science and machine learning.

Python vs. JavaScript: Community, Libraries, and Resources Python vs. JavaScript: Community, Libraries, and Resources Apr 15, 2025 am 12:16 AM

Python and JavaScript have their own advantages and disadvantages in terms of community, libraries and resources. 1) The Python community is friendly and suitable for beginners, but the front-end development resources are not as rich as JavaScript. 2) Python is powerful in data science and machine learning libraries, while JavaScript is better in front-end development libraries and frameworks. 3) Both have rich learning resources, but Python is suitable for starting with official documents, while JavaScript is better with MDNWebDocs. The choice should be based on project needs and personal interests.

Detailed explanation of docker principle Detailed explanation of docker principle Apr 14, 2025 pm 11:57 PM

Docker uses Linux kernel features to provide an efficient and isolated application running environment. Its working principle is as follows: 1. The mirror is used as a read-only template, which contains everything you need to run the application; 2. The Union File System (UnionFS) stacks multiple file systems, only storing the differences, saving space and speeding up; 3. The daemon manages the mirrors and containers, and the client uses them for interaction; 4. Namespaces and cgroups implement container isolation and resource limitations; 5. Multiple network modes support container interconnection. Only by understanding these core concepts can you better utilize Docker.

How to run programs in terminal vscode How to run programs in terminal vscode Apr 15, 2025 pm 06:42 PM

In VS Code, you can run the program in the terminal through the following steps: Prepare the code and open the integrated terminal to ensure that the code directory is consistent with the terminal working directory. Select the run command according to the programming language (such as Python's python your_file_name.py) to check whether it runs successfully and resolve errors. Use the debugger to improve debugging efficiency.

Python: Automation, Scripting, and Task Management Python: Automation, Scripting, and Task Management Apr 16, 2025 am 12:14 AM

Python excels in automation, scripting, and task management. 1) Automation: File backup is realized through standard libraries such as os and shutil. 2) Script writing: Use the psutil library to monitor system resources. 3) Task management: Use the schedule library to schedule tasks. Python's ease of use and rich library support makes it the preferred tool in these areas.

Is the vscode extension malicious? Is the vscode extension malicious? Apr 15, 2025 pm 07:57 PM

VS Code extensions pose malicious risks, such as hiding malicious code, exploiting vulnerabilities, and masturbating as legitimate extensions. Methods to identify malicious extensions include: checking publishers, reading comments, checking code, and installing with caution. Security measures also include: security awareness, good habits, regular updates and antivirus software.

How to install nginx in centos How to install nginx in centos Apr 14, 2025 pm 08:06 PM

CentOS Installing Nginx requires following the following steps: Installing dependencies such as development tools, pcre-devel, and openssl-devel. Download the Nginx source code package, unzip it and compile and install it, and specify the installation path as /usr/local/nginx. Create Nginx users and user groups and set permissions. Modify the configuration file nginx.conf, and configure the listening port and domain name/IP address. Start the Nginx service. Common errors need to be paid attention to, such as dependency issues, port conflicts, and configuration file errors. Performance optimization needs to be adjusted according to the specific situation, such as turning on cache and adjusting the number of worker processes.

What is vscode What is vscode for? What is vscode What is vscode for? Apr 15, 2025 pm 06:45 PM

VS Code is the full name Visual Studio Code, which is a free and open source cross-platform code editor and development environment developed by Microsoft. It supports a wide range of programming languages ​​and provides syntax highlighting, code automatic completion, code snippets and smart prompts to improve development efficiency. Through a rich extension ecosystem, users can add extensions to specific needs and languages, such as debuggers, code formatting tools, and Git integrations. VS Code also includes an intuitive debugger that helps quickly find and resolve bugs in your code.

See all articles