Table of Contents
1. Pre-knowledge
2. Preparation
3. Use the DeepLab-v3 network for image semantic segmentation
4. Summary
Home Backend Development Python Tutorial How to use image semantic segmentation technology in Python?

How to use image semantic segmentation technology in Python?

Jun 06, 2023 am 08:03 AM
python image Split

With the continuous development of artificial intelligence technology, image semantic segmentation technology has become a popular research direction in the field of image analysis. In image semantic segmentation, we segment different areas in an image and classify each area to achieve a comprehensive understanding of the image.

Python is a well-known programming language. Its powerful data analysis and data visualization capabilities make it the first choice in the field of artificial intelligence technology research. This article will introduce how to use image semantic segmentation technology in Python.

1. Pre-knowledge

Before learning how to use image semantic segmentation technology in Python, you need to have some knowledge about deep learning and convolutional neural network (CNN). and basic knowledge of image processing. If you are an experienced Python developer but have no experience with deep learning and CNN models, it is recommended that you learn some related knowledge first.

2. Preparation

In order to use image semantic segmentation technology, we need some pre-trained models. There are many popular deep learning frameworks, such as Keras, PyTorch, and TensorFlow, which provide pre-trained models for developers to use.

In this article, we will use the TensorFlow framework and its global image semantic segmentation model - DeepLab-v3, as well as a Python library that can be used to process images - the Pillow library.

We can install the libraries we need to use through the following command:

pip install tensorflow==2.4.0
pip install Pillow
Copy after login

3. Use the DeepLab-v3 network for image semantic segmentation

DeepLab-v3 is an efficient Deep convolutional neural network model for image semantic segmentation. It has a series of advanced technologies, including Dilated Convolution, multi-scale data aggregation and Conditional Random Field (CRF).

The Pillow library provides some convenient tools for processing and reading image files. Next, we will use the Image class from the Pillow library to read an image file. The code looks like this:

from PIL import Image
im = Image.open('example.jpg')
Copy after login

Here we can replace example.jpg with our own image file name.

By using the DeepLab-v3 model and the image we read in, we can get a detailed image semantic segmentation result. In order to use the pre-trained DeepLab-v3 model, we need to download the model weight file. It can be found on the official TensorFlow model page.

# 导入预训练的 DeepLab-v3+ 模型
from tensorflow.keras.models import Model
from tensorflow.keras.layers import Input
from tensorflow.keras.applications import MobileNetV2
from tensorflow.keras.layers import Conv2DTranspose, Concatenate, Activation, MaxPooling2D, Conv2D, BatchNormalization, Dropout 

def create_model(num_classes):
    # 加载 MobileNetV2 预训练模型
    base_model = MobileNetV2(input_shape=(256, 256, 3), include_top=False, weights='imagenet')

    # 获取对应层输出的张量
    low_level_features = base_model.get_layer('block_1_expand_relu').output
    x = base_model.get_layer('out_relu').output

    # 通过使用反卷积尺寸进行上采样和空洞卷积,构建 DeepLab-v3+ 系统,并针对特定的数据集来训练其分类器
    x = Conv2D(256, (1, 1), activation='relu', padding='same', name='concat_projection')(x)
    x = Dropout(0.3)(x)
    x = Conv2DTranspose(128, (3, 3), strides=(2, 2), padding='same', name='decoder_conv0')(x)
    x = BatchNormalization(name='decoder_bn0')(x)
    x = Activation('relu', name='decoder_relu0')(x)
    x = Concatenate(name='decoder_concat0')([x, low_level_features])
    x = Conv2D(128, (1, 1), padding='same', name='decoder_conv1')(x)
    x = Dropout(0.3)(x)
    x = Conv2DTranspose(64, (3, 3), strides=(2, 2), padding='same', name='decoder_conv2')(x)
    x = BatchNormalization(name='decoder_bn2')(x)
    x = Activation('relu', name='decoder_relu2')(x)
    x = Conv2D(num_classes, (1, 1), padding='same', name='decoder_conv3')(x)
    x = Activation('softmax', name='softmax')(x)

    # 创建 Keras 模型,并返回它
    model = Model(inputs=base_model.input, outputs=x)

    return model
Copy after login

Now that we have successfully loaded the model, we can start semantic segmentation of the image. The code is as follows:

import numpy as np
import urllib.request

# 读取图像
urllib.request.urlretrieve('https://www.tensorflow.org/images/surf.jpg', 'image.jpg')
image = Image.open('image.jpg')
image_array = np.array(image)

# 加载训练好的模型
model = create_model(num_classes=21)
model.load_weights('deeplabv3_xception_tf_dim_ordering_tf_kernels.h5')
print('模型加载成功。')

# 将输入图像调整为模型所需形状,并进行语义分割
input_tensor = tf.convert_to_tensor(np.expand_dims(image_array, 0))
output_tensor = model(input_tensor)

# 显示语义分割结果
import matplotlib.pyplot as plt

parsed_results = output_tensor.numpy().squeeze()
parsed_results = np.argmax(parsed_results, axis=2)
plt.imshow(parsed_results)
plt.show()
Copy after login

After running this code, you will get a neural network output with a color distribution similar to the example shown.

4. Summary

In this article, we introduced how to use image semantic segmentation technology in Python and successfully loaded the pre-trained DeepLab-v3 model. Of course, the example used here is just one of the methods, and different research directions require different processing methods. If you're interested, delve into this area and use these techniques in your own projects.

The above is the detailed content of How to use image semantic segmentation technology in Python?. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
2 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
Repo: How To Revive Teammates
4 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
Hello Kitty Island Adventure: How To Get Giant Seeds
4 weeks ago By 尊渡假赌尊渡假赌尊渡假赌

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

How to efficiently integrate Node.js or Python services under LAMP architecture? How to efficiently integrate Node.js or Python services under LAMP architecture? Apr 01, 2025 pm 02:48 PM

Many website developers face the problem of integrating Node.js or Python services under the LAMP architecture: the existing LAMP (Linux Apache MySQL PHP) architecture website needs...

How to solve the permissions problem encountered when viewing Python version in Linux terminal? How to solve the permissions problem encountered when viewing Python version in Linux terminal? Apr 01, 2025 pm 05:09 PM

Solution to permission issues when viewing Python version in Linux terminal When you try to view Python version in Linux terminal, enter python...

What is the reason why pipeline persistent storage files cannot be written when using Scapy crawler? What is the reason why pipeline persistent storage files cannot be written when using Scapy crawler? Apr 01, 2025 pm 04:03 PM

When using Scapy crawler, the reason why pipeline persistent storage files cannot be written? Discussion When learning to use Scapy crawler for data crawler, you often encounter a...

Python hourglass graph drawing: How to avoid variable undefined errors? Python hourglass graph drawing: How to avoid variable undefined errors? Apr 01, 2025 pm 06:27 PM

Getting started with Python: Hourglass Graphic Drawing and Input Verification This article will solve the variable definition problem encountered by a Python novice in the hourglass Graphic Drawing Program. Code...

What is the reason why the Python process pool handles concurrent TCP requests and causes the client to get stuck? What is the reason why the Python process pool handles concurrent TCP requests and causes the client to get stuck? Apr 01, 2025 pm 04:09 PM

Python process pool handles concurrent TCP requests that cause client to get stuck. When using Python for network programming, it is crucial to efficiently handle concurrent TCP requests. ...

How to view the original functions encapsulated internally by Python functools.partial object? How to view the original functions encapsulated internally by Python functools.partial object? Apr 01, 2025 pm 04:15 PM

Deeply explore the viewing method of Python functools.partial object in functools.partial using Python...

Python Cross-platform Desktop Application Development: Which GUI Library is the best for you? Python Cross-platform Desktop Application Development: Which GUI Library is the best for you? Apr 01, 2025 pm 05:24 PM

Choice of Python Cross-platform desktop application development library Many Python developers want to develop desktop applications that can run on both Windows and Linux systems...

How to efficiently copy the entire column of one DataFrame into another DataFrame with different structures in Python? How to efficiently copy the entire column of one DataFrame into another DataFrame with different structures in Python? Apr 01, 2025 pm 11:15 PM

When using Python's pandas library, how to copy whole columns between two DataFrames with different structures is a common problem. Suppose we have two Dats...

See all articles