Home Backend Development Python Tutorial Detailed explanation of seaborn, a data visualization library in Python

Detailed explanation of seaborn, a data visualization library in Python

Jun 10, 2023 am 11:25 AM
python data visualization seaborn

Detailed explanation of seaborn, a data visualization library in Python

In the field of data science, data visualization is an extremely important skill. As a versatile language, Python has become the first choice of many data scientists. There are many visualization libraries in Python, one of the popular ones is seaborn.

seaborn is a Python advanced data visualization library developed based on the matplotlib library. It provides a more beautiful and simple visual interface, suitable for analyzing and observing complex data.

seaborn provides many visualization tools, including:

  1. Distribution plot
  2. Heat map
  3. Linear regression plot
  4. Joint distribution chart
  5. Statistical chart

Next, we will analyze these visualization tools in detail.

  1. Distribution Plotting

Distribution plotting is a visualization technique used to understand the distribution of data. seaborn provides a variety of distribution drawing methods, including:

a. Histogram

The histogram is a visual method to display the distribution of data. It divides the data into a certain number of intervals, and then Calculate the frequency of the data within each interval and plot the frequencies on a graph. In seaborn, you can use the distplot() function to draw a histogram.

b. Kernel Density Estimation (KDE)

Kernel density estimation is a method that obtains the probability density of data distribution by smoothing the data. In seaborn, you can use the kdeplot() function to draw a KDE plot, and you can add a KDE line to the histogram.

c. Line chart

The line chart is a visualization technique that shows how the amount of data changes as variables change. In seaborn, you can use the lineplot() function to draw a line chart.

  1. Heat map

Heat map is a visualization technology that presents the data matrix in the form of color blocks. In seaborn, you can use the heatmap() function to draw a heat map.

  1. Linear Regression Plot

Linear regression plot is a visualization technique used to show the relationship between two variables. In seaborn, you can use the regplot() function to draw linear regression plots.

  1. Joint distribution diagram

The joint distribution diagram is a visualization technique that simultaneously displays the distribution of two variables and the relationship between them. In seaborn, you can use the jointplot() function to draw a joint distribution plot.

  1. Statistical Chart

Statistical chart is a visualization technology that displays the statistical characteristics of data. In seaborn, you can use the countplot() function to draw histograms, and the boxplot() function to draw box plots, etc.

When using seaborn for data visualization, some preprocessing of the data is required, such as data normalization, data cleaning, etc. In addition, you also need to learn the design principles in drawing, such as the design of labels, titles, etc. on the horizontal and vertical axes.

In short, seaborn is a Python data visualization library with powerful functions and beautiful interface, which can help data scientists quickly and accurately understand their data and make corresponding decisions.

The above is the detailed content of Detailed explanation of seaborn, a data visualization library in Python. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
1 months ago By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Best Graphic Settings
1 months ago By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. How to Fix Audio if You Can't Hear Anyone
1 months ago By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Chat Commands and How to Use Them
1 months ago By 尊渡假赌尊渡假赌尊渡假赌

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

PHP and Python: Code Examples and Comparison PHP and Python: Code Examples and Comparison Apr 15, 2025 am 12:07 AM

PHP and Python have their own advantages and disadvantages, and the choice depends on project needs and personal preferences. 1.PHP is suitable for rapid development and maintenance of large-scale web applications. 2. Python dominates the field of data science and machine learning.

How to train PyTorch model on CentOS How to train PyTorch model on CentOS Apr 14, 2025 pm 03:03 PM

Efficient training of PyTorch models on CentOS systems requires steps, and this article will provide detailed guides. 1. Environment preparation: Python and dependency installation: CentOS system usually preinstalls Python, but the version may be older. It is recommended to use yum or dnf to install Python 3 and upgrade pip: sudoyumupdatepython3 (or sudodnfupdatepython3), pip3install--upgradepip. CUDA and cuDNN (GPU acceleration): If you use NVIDIAGPU, you need to install CUDATool

Detailed explanation of docker principle Detailed explanation of docker principle Apr 14, 2025 pm 11:57 PM

Docker uses Linux kernel features to provide an efficient and isolated application running environment. Its working principle is as follows: 1. The mirror is used as a read-only template, which contains everything you need to run the application; 2. The Union File System (UnionFS) stacks multiple file systems, only storing the differences, saving space and speeding up; 3. The daemon manages the mirrors and containers, and the client uses them for interaction; 4. Namespaces and cgroups implement container isolation and resource limitations; 5. Multiple network modes support container interconnection. Only by understanding these core concepts can you better utilize Docker.

How is the GPU support for PyTorch on CentOS How is the GPU support for PyTorch on CentOS Apr 14, 2025 pm 06:48 PM

Enable PyTorch GPU acceleration on CentOS system requires the installation of CUDA, cuDNN and GPU versions of PyTorch. The following steps will guide you through the process: CUDA and cuDNN installation determine CUDA version compatibility: Use the nvidia-smi command to view the CUDA version supported by your NVIDIA graphics card. For example, your MX450 graphics card may support CUDA11.1 or higher. Download and install CUDAToolkit: Visit the official website of NVIDIACUDAToolkit and download and install the corresponding version according to the highest CUDA version supported by your graphics card. Install cuDNN library:

Python vs. JavaScript: Community, Libraries, and Resources Python vs. JavaScript: Community, Libraries, and Resources Apr 15, 2025 am 12:16 AM

Python and JavaScript have their own advantages and disadvantages in terms of community, libraries and resources. 1) The Python community is friendly and suitable for beginners, but the front-end development resources are not as rich as JavaScript. 2) Python is powerful in data science and machine learning libraries, while JavaScript is better in front-end development libraries and frameworks. 3) Both have rich learning resources, but Python is suitable for starting with official documents, while JavaScript is better with MDNWebDocs. The choice should be based on project needs and personal interests.

How to choose the PyTorch version under CentOS How to choose the PyTorch version under CentOS Apr 14, 2025 pm 02:51 PM

When selecting a PyTorch version under CentOS, the following key factors need to be considered: 1. CUDA version compatibility GPU support: If you have NVIDIA GPU and want to utilize GPU acceleration, you need to choose PyTorch that supports the corresponding CUDA version. You can view the CUDA version supported by running the nvidia-smi command. CPU version: If you don't have a GPU or don't want to use a GPU, you can choose a CPU version of PyTorch. 2. Python version PyTorch

How to install nginx in centos How to install nginx in centos Apr 14, 2025 pm 08:06 PM

CentOS Installing Nginx requires following the following steps: Installing dependencies such as development tools, pcre-devel, and openssl-devel. Download the Nginx source code package, unzip it and compile and install it, and specify the installation path as /usr/local/nginx. Create Nginx users and user groups and set permissions. Modify the configuration file nginx.conf, and configure the listening port and domain name/IP address. Start the Nginx service. Common errors need to be paid attention to, such as dependency issues, port conflicts, and configuration file errors. Performance optimization needs to be adjusted according to the specific situation, such as turning on cache and adjusting the number of worker processes.

How to do data preprocessing with PyTorch on CentOS How to do data preprocessing with PyTorch on CentOS Apr 14, 2025 pm 02:15 PM

Efficiently process PyTorch data on CentOS system, the following steps are required: Dependency installation: First update the system and install Python3 and pip: sudoyumupdate-ysudoyuminstallpython3-ysudoyuminstallpython3-pip-y Then, download and install CUDAToolkit and cuDNN from the NVIDIA official website according to your CentOS version and GPU model. Virtual environment configuration (recommended): Use conda to create and activate a new virtual environment, for example: condacreate-n

See all articles