Python has always been widely used and loved for its simple, flexible syntax and powerful ecosystem and libraries, including in fields such as scientific computing and machine learning. Neural networks play a vital role in the field of machine learning and can be used in many fields such as computer vision, natural language processing, and recommendation systems. This article will introduce neural networks in Python and give some examples.
Neural network is a deep learning model that has the characteristics of simulating the nervous system of animals. A neural network is composed of multiple neurons. Each neuron is equivalent to a function. Its input is the output from other neurons, which is processed by an activation function to generate an output. Neural networks utilize the backpropagation algorithm to continuously adjust weights and biases, allowing the model to better fit the data and make predictions or classifications.
TensorFlow is a popular deep learning framework launched by Google for building neural networks and other machine learning algorithms. Originally developed for internal Google researchers, TensorFlow quickly became one of the most popular deep learning frameworks after being open sourced.
In TensorFlow, we can use the following steps to create a neural network:
Now, we will introduce two examples of neural networks implemented using TensorFlow.
Handwritten digit recognition is an important issue in the field of computer vision, and neural networks have achieved good results on this issue. In TensorFlow, you can train a neural network using the MNIST dataset, which contains 60,000 28x28 grayscale images and corresponding labels.
First, we need to install the TensorFlow and NumPy libraries. The following is a complete code for handwritten digit recognition:
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets("MNIST_data/", one_hot=True) #创建模型 x = tf.placeholder(tf.float32, [None, 784]) W = tf.Variable(tf.zeros([784, 10])) b = tf.Variable(tf.zeros([10])) y = tf.nn.softmax(tf.matmul(x, W) + b) #定义损失函数和优化器 y_actual = tf.placeholder(tf.float32, [None, 10]) loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y_actual, logits=y)) train_step = tf.train.GradientDescentOptimizer(0.01).minimize(loss) #初始化变量 init = tf.global_variables_initializer() #训练模型 sess = tf.Session() sess.run(init) for i in range(1000): batch_xs, batch_ys = mnist.train.next_batch(100) sess.run(train_step, feed_dict={x: batch_xs, y_actual: batch_ys}) #评估模型 correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_actual,1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) print(sess.run(accuracy, feed_dict={x: mnist.test.images, y_actual: mnist.test.labels}))
In this example, we first prepared the dataset MNIST, and then created a simple neural network model containing 784 inputs and 10 outputs. Next, we defined the loss function and optimizer and fed the training data into the model for training. Finally, we performed test evaluation on the test data and obtained an accuracy of 92.3%.
Almost everyone uses the mail system now, but everyone faces the spam problem. A spam filter is a program that checks whether an email is spam. Let’s see how to use neural networks to build a spam filter.
First, we need to prepare a spam data set, including emails that have been marked as spam and non-spam. Please note that when building a spam filter, there will be two categories of messages: non-spam and spam.
The following is the complete code of the spam filter:
import numpy as np import pandas as pd import tensorflow as tf from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score #读取数据集 data = pd.read_csv('spam.csv') data = data.drop(['Unnamed: 2', 'Unnamed: 3', 'Unnamed: 4'], axis=1) #转换标签 data['v1'] = data['v1'].map({'ham': 0, 'spam': 1}) #划分数据集 X_train, X_test, y_train, y_test = train_test_split(data['v2'], data['v1'], test_size=0.33, random_state=42) #创建神经网络模型 max_words = 1000 tokenize = tf.keras.preprocessing.text.Tokenizer(num_words=max_words, char_level=False) tokenize.fit_on_texts(X_train) x_train = tokenize.texts_to_matrix(X_train) x_test = tokenize.texts_to_matrix(X_test) model = tf.keras.models.Sequential() model.add(tf.keras.layers.Dense(512, input_shape=(max_words,), activation='relu')) model.add(tf.keras.layers.Dropout(0.5)) model.add(tf.keras.layers.Dense(256, activation='sigmoid')) model.add(tf.keras.layers.Dropout(0.5)) model.add(tf.keras.layers.Dense(1, activation='sigmoid')) model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) #训练模型 model.fit(x_train, y_train, batch_size=32, epochs=5, validation_data=(x_test, y_test)) #评估模型 y_predict = model.predict(x_test) print("Accuracy:", accuracy_score(y_test, y_predict.round()))
In this example, we use sklearn's train_test_split() method to divide the data set, and then use the Keras library Text preprocessing tools convert datasets into matrices (one-hot encoding). Next, we use Sequential to declare the neuron and set its parameters. Finally, we used the trained model to predict the test data and evaluated it to obtain an accuracy of 98.02%.
Neural networks in Python are a powerful technique that can be used in a variety of applications such as image recognition, spam filters, etc. Using TensorFlow, we can easily create, train, and test neural network models and obtain satisfactory results. As people's demand for machine learning grows, neural network technology will become a more important tool and be more widely used in future application scenarios.
The above is the detailed content of Neural network examples in Python. For more information, please follow other related articles on the PHP Chinese website!