Home Backend Development Python Tutorial Detailed explanation of matplotlib drawing library in Python

Detailed explanation of matplotlib drawing library in Python

Jun 10, 2023 pm 09:42 PM
python matplotlib Drawing library

Python’s matplotlib drawing library is a very powerful data visualization tool. It can be used to draw various types of graphs, including line graphs, scatter plots, bar graphs, histograms, pie charts, and more. Due to its ease of learning and use, as well as community support, matplotlib has become one of the standard visualization tools in the Python scientific computing community. This article will introduce in detail how to use the matplotlib drawing library and how to draw common graphics.

1. Matplotlib basics

  1. Import Matplotlib

Before using matplotlib, you need to import it first. Usually the following code is used to import:

import matplotlib.pyplot as plt
Copy after login

Among them, plt is a conventional name used to simplify the use of matplotlib.

  1. Drawing window

Before drawing graphics, you need to create a drawing window. You can use the following code to create the simplest drawing window:

plt.figure()
Copy after login

When no parameters are passed, a window with a size of (8, 6) inches is created by default.

  1. Draw graphics

After creating the drawing window, you can start drawing graphics. For example, to draw a simple straight line, you can use the following code:

import numpy as np

x = np.array([0, 1, 2, 3, 4])
y = np.array([0, 1, 2, 3, 4])

plt.plot(x, y)
plt.show()
Copy after login

where np is an alias for the NumPy library used to generate data on the x and y axes. The plot function is used to draw straight lines, and the show function is used to display graphics. After running this code, a drawing window will pop up and display the straight line.

2. Common graph drawing methods

  1. Line graph

Line graph is a graph used to draw continuous data. It can be plotted using the plot function. For example, the following code will draw a sine function curve:

x = np.arange(0, 10, 0.1)
y = np.sin(x)

plt.plot(x, y)
plt.show()
Copy after login

where x ranges from 0 to 10 with a step size of 0.1, and y is the corresponding sine function value.

  1. Scatter plot

A scatter plot is used to plot the relationship between two variables, such as X and Y coordinates. You can use the scatter function for drawing. For example, the following code will create a scatter plot of random data:

x = np.random.rand(50)
y = np.random.rand(50)

plt.scatter(x, y)
plt.show()
Copy after login

where x and y are both random numbers of length 50.

  1. Histogram

The histogram is used to compare the numerical values ​​under various categories. It can be drawn using the bar function. For example, the following code will draw a simple histogram:

x = ["A", "B", "C", "D", "E"]
y = [10, 5, 8, 12, 7]

plt.bar(x, y)
plt.show()
Copy after login

where x is the category and y is the numerical size under each category.

  1. Histogram

Histogram is used to display the distribution of a set of data. It can be drawn using the hist function. For example, the following code will plot a histogram of random data:

x = np.random.randn(1000)

plt.hist(x)
plt.show()
Copy after login

where x is a random number of length 1000.

  1. Pie chart

The pie chart is used to display the proportion of various categories. You can use the pie function for drawing. For example, the following code will draw a simple pie chart:

labels = ["A", "B", "C", "D", "E"]
sizes = [15, 30, 45, 10, 5]

plt.pie(sizes, labels=labels)
plt.show()
Copy after login

where sizes is the size of each category, and labels is the name of each category.

3. Matplotlib advanced

  1. Coordinate axis setting

Use xlabel, ylabel, and title functions to set the horizontal axis, vertical axis, and graphic title:

plt.xlabel("X-axis")
plt.ylabel("Y-axis")
plt.title("Title")
plt.plot(x, y)
plt.show()
Copy after login
  1. Legend setting

Use the legend function to set the legend to distinguish different data sets:

x1 = np.arange(0, 10, 0.1)
y1 = np.sin(x1)

x2 = np.arange(0, 10, 0.1)
y2 = np.cos(x2)

plt.plot(x1, y1, label="sin")
plt.plot(x2, y2, label="cos")
plt.legend()
plt.show()
Copy after login

Among them, the label parameter is used to distinguish For different data sets, the legend function is used to display legends.

  1. Formatting style settings

You can use the fmt parameter to set the style of the line, such as color, line shape and line width:

plt.plot(x, y, "r--", linewidth=2)
plt.show()
Copy after login

Among them, r- - represents a red dotted line, and the linewidth parameter is used to set the line width.

  1. Subplot settings

You can use the subplot function to draw multiple subplots:

plt.subplot(2, 2, 1)
plt.plot(x, y)

plt.subplot(2, 2, 2)
plt.scatter(x, y)

plt.subplot(2, 2, 3)
plt.bar(x, y)

plt.subplot(2, 2, 4)
plt.hist(x)

plt.show()
Copy after login

Among them, the subplot function accepts 3 parameters, representing the number of lines respectively. , column number and sub-figure serial number.

  1. Save the graphics

Use the savefig function to save the graphics as a file:

plt.plot(x, y)
plt.savefig("figure.png")
Copy after login

The parameters represent the file name and path.

Conclusion

This article introduces the basic usage of matplotlib drawing library and the drawing methods of common graphics, as well as some advanced techniques. As an indispensable part of Python scientific computing, learning the matplotlib drawing library will help you better perform data visualization and data analysis.

The above is the detailed content of Detailed explanation of matplotlib drawing library in Python. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
2 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
Repo: How To Revive Teammates
1 months ago By 尊渡假赌尊渡假赌尊渡假赌
Hello Kitty Island Adventure: How To Get Giant Seeds
4 weeks ago By 尊渡假赌尊渡假赌尊渡假赌

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

Can the Python interpreter be deleted in Linux system? Can the Python interpreter be deleted in Linux system? Apr 02, 2025 am 07:00 AM

Regarding the problem of removing the Python interpreter that comes with Linux systems, many Linux distributions will preinstall the Python interpreter when installed, and it does not use the package manager...

How to solve the problem of Pylance type detection of custom decorators in Python? How to solve the problem of Pylance type detection of custom decorators in Python? Apr 02, 2025 am 06:42 AM

Pylance type detection problem solution when using custom decorator In Python programming, decorator is a powerful tool that can be used to add rows...

How to solve permission issues when using python --version command in Linux terminal? How to solve permission issues when using python --version command in Linux terminal? Apr 02, 2025 am 06:36 AM

Using python in Linux terminal...

How to ensure that the child process also terminates after killing the parent process via signal in Python? How to ensure that the child process also terminates after killing the parent process via signal in Python? Apr 02, 2025 am 06:39 AM

The problem and solution of the child process continuing to run when using signals to kill the parent process. In Python programming, after killing the parent process through signals, the child process still...

What should I do if the '__builtin__' module is not found when loading the Pickle file in Python 3.6? What should I do if the '__builtin__' module is not found when loading the Pickle file in Python 3.6? Apr 02, 2025 am 07:12 AM

Error loading Pickle file in Python 3.6 environment: ModuleNotFoundError:Nomodulenamed...

How to solve the error problem encountered when creating a project of HttpRunner? How to solve the error problem encountered when creating a project of HttpRunner? Apr 02, 2025 am 06:33 AM

Solve the problem of errors in creating a scaffolding project by HttpRunner. When using HttpRunner for interface testing, its scaffolding function is often used to create a project. �...

Is Debian Strings compatible with multiple browsers Is Debian Strings compatible with multiple browsers Apr 02, 2025 am 08:30 AM

"DebianStrings" is not a standard term, and its specific meaning is still unclear. This article cannot directly comment on its browser compatibility. However, if "DebianStrings" refers to a web application running on a Debian system, its browser compatibility depends on the technical architecture of the application itself. Most modern web applications are committed to cross-browser compatibility. This relies on following web standards and using well-compatible front-end technologies (such as HTML, CSS, JavaScript) and back-end technologies (such as PHP, Python, Node.js, etc.). To ensure that the application is compatible with multiple browsers, developers often need to conduct cross-browser testing and use responsiveness

See all articles