


Application of trusted computing technology in the field of autonomous driving
The development of autonomous driving technology has become one of the hot spots in the automotive industry. As more automakers and technology companies join the autonomous driving battleground, people are becoming more and more interested in the potential and possibilities of autonomous driving technology. However, there are still some problems and challenges in the development of autonomous driving technology, the most important of which may be safety issues. Therefore, the application of trusted computing technology has become one of the keys to solving this problem.
Trusted computing technology is a technology used to protect the security, privacy and data integrity of computer systems. It protects computer systems from various threats and ensures the security and reliability of computer systems by establishing a trustworthy computing environment. The implementation of autonomous driving technology requires the processing of large amounts of data and real-time decision-making and control. In this process, the issue of trust is the most critical. The application of trusted computing technology can reduce malicious attacks in the system and improve the safety and reliability of autonomous driving systems.
The core of trusted computing technology is to establish a trustworthy computing environment. This environment includes many aspects such as operating system, processor, memory, storage, input and output devices, etc. By verifying the credibility of these components, a safe and reliable computing environment can be established. In autonomous driving systems, trusted computing technology can be applied to many aspects, such as hardware security, software security, communication security, etc.
In terms of hardware security, autonomous driving systems need to have trusted processors to ensure that the system will not be subject to physical attacks. Using processor technology based on trusted computing, the processor can be safely monitored and protected to prevent malicious attacks and reverse engineering. At the same time, sensors can also be verified and authenticated to prevent data from being tampered with or forged.
In terms of software security, autonomous driving systems need to ensure the security of the software and the integrity of the code. The use of trusted computing technology can realize dynamic detection and anti-tampering of software, ensuring that the system code will not be tampered with or run malicious code.
In terms of communication security, autonomous driving systems need to communicate between vehicles, and this process is vulnerable to hacker attacks. Using communication security technology based on trusted computing technology, communications can be encrypted and authenticated to prevent data from being stolen and tampered with. At the same time, the system can also be remotely monitored and managed to detect the security status of the system in real time.
Generally speaking, the application of trusted computing technology in the field of autonomous driving can improve the safety and reliability of the system and provide important support for the development of autonomous driving technology. In the future, with the popularization and application of autonomous driving technology, trusted computing technology will play an even more important role and become one of the important guarantees for the development of autonomous driving technology.
The above is the detailed content of Application of trusted computing technology in the field of autonomous driving. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics



Yesterday during the interview, I was asked whether I had done any long-tail related questions, so I thought I would give a brief summary. The long-tail problem of autonomous driving refers to edge cases in autonomous vehicles, that is, possible scenarios with a low probability of occurrence. The perceived long-tail problem is one of the main reasons currently limiting the operational design domain of single-vehicle intelligent autonomous vehicles. The underlying architecture and most technical issues of autonomous driving have been solved, and the remaining 5% of long-tail problems have gradually become the key to restricting the development of autonomous driving. These problems include a variety of fragmented scenarios, extreme situations, and unpredictable human behavior. The "long tail" of edge scenarios in autonomous driving refers to edge cases in autonomous vehicles (AVs). Edge cases are possible scenarios with a low probability of occurrence. these rare events

The role and practical application of arrow symbols in PHP In PHP, the arrow symbol (->) is usually used to access the properties and methods of objects. Objects are one of the basic concepts of object-oriented programming (OOP) in PHP. In actual development, arrow symbols play an important role in operating objects. This article will introduce the role and practical application of arrow symbols, and provide specific code examples to help readers better understand. 1. The role of the arrow symbol to access the properties of an object. The arrow symbol can be used to access the properties of an object. When we instantiate a pair

Deleted something important from your home screen and trying to get it back? You can put app icons back on the screen in a variety of ways. We have discussed all the methods you can follow and put the app icon back on the home screen. How to Undo Remove from Home Screen in iPhone As we mentioned before, there are several ways to restore this change on iPhone. Method 1 – Replace App Icon in App Library You can place an app icon on your home screen directly from the App Library. Step 1 – Swipe sideways to find all apps in the app library. Step 2 – Find the app icon you deleted earlier. Step 3 – Simply drag the app icon from the main library to the correct location on the home screen. This is the application diagram

Written in front & starting point The end-to-end paradigm uses a unified framework to achieve multi-tasking in autonomous driving systems. Despite the simplicity and clarity of this paradigm, the performance of end-to-end autonomous driving methods on subtasks still lags far behind single-task methods. At the same time, the dense bird's-eye view (BEV) features widely used in previous end-to-end methods make it difficult to scale to more modalities or tasks. A sparse search-centric end-to-end autonomous driving paradigm (SparseAD) is proposed here, in which sparse search fully represents the entire driving scenario, including space, time, and tasks, without any dense BEV representation. Specifically, a unified sparse architecture is designed for task awareness including detection, tracking, and online mapping. In addition, heavy

In the past month, due to some well-known reasons, I have had very intensive exchanges with various teachers and classmates in the industry. An inevitable topic in the exchange is naturally end-to-end and the popular Tesla FSDV12. I would like to take this opportunity to sort out some of my thoughts and opinions at this moment for your reference and discussion. How to define an end-to-end autonomous driving system, and what problems should be expected to be solved end-to-end? According to the most traditional definition, an end-to-end system refers to a system that inputs raw information from sensors and directly outputs variables of concern to the task. For example, in image recognition, CNN can be called end-to-end compared to the traditional feature extractor + classifier method. In autonomous driving tasks, input data from various sensors (camera/LiDAR

Target detection is a relatively mature problem in autonomous driving systems, among which pedestrian detection is one of the earliest algorithms to be deployed. Very comprehensive research has been carried out in most papers. However, distance perception using fisheye cameras for surround view is relatively less studied. Due to large radial distortion, standard bounding box representation is difficult to implement in fisheye cameras. To alleviate the above description, we explore extended bounding box, ellipse, and general polygon designs into polar/angular representations and define an instance segmentation mIOU metric to analyze these representations. The proposed model fisheyeDetNet with polygonal shape outperforms other models and simultaneously achieves 49.5% mAP on the Valeo fisheye camera dataset for autonomous driving

A purely visual annotation solution mainly uses vision plus some data from GPS, IMU and wheel speed sensors for dynamic annotation. Of course, for mass production scenarios, it doesn’t have to be pure vision. Some mass-produced vehicles will have sensors like solid-state radar (AT128). If we create a data closed loop from the perspective of mass production and use all these sensors, we can effectively solve the problem of labeling dynamic objects. But there is no solid-state radar in our plan. Therefore, we will introduce this most common mass production labeling solution. The core of a purely visual annotation solution lies in high-precision pose reconstruction. We use the pose reconstruction scheme of Structure from Motion (SFM) to ensure reconstruction accuracy. But pass

The Linuxtee command is a very useful command line tool that can write output to a file or send output to another command without affecting existing output. In this article, we will explore in depth the various application scenarios of the Linuxtee command, from entry to proficiency. 1. Basic usage First, let’s take a look at the basic usage of the tee command. The syntax of tee command is as follows: tee[OPTION]...[FILE]...This command will read data from standard input and save the data to
