Thread pool in Java
In Java, the thread pool is used to manage tasks such as the creation, maintenance, and destruction of threads. The thread pool contains a group of threads and a task queue. When a task needs to be executed, the threads in the thread pool will automatically obtain the task and execute it. After the task is executed, the thread will also be recycled to the thread pool for reuse.
The thread pool API in Java provides an Executors class to help us create a thread pool, and provides four thread pool implementation methods: FixedThreadPool, CachedThreadPool, SingleThreadExecutor and ScheduledThreadPool.
FixedThreadPool
A fixed-size thread pool will only create new threads to perform tasks when the number of working threads does not reach the thread pool size. The thread pool can specify the maximum number of threads through the constructor. If not specified, it defaults to Integer.MAX_VALUE.
Sample code:
ExecutorService executorService = Executors.newFixedThreadPool(5); for (int i = 0; i < 10; i++) { executorService.execute(()->{ System.out.println(Thread.currentThread().getName()+" is executing task "); try { Thread.sleep(1000); } catch (InterruptedException e) { e.printStackTrace(); } }); }
Running result:
pool-1-thread-1 is executing task pool-1-thread-3 is executing task pool-1-thread-5 is executing task pool-1-thread-2 is executing task pool-1-thread-4 is executing task pool-1-thread-5 is executing task pool-1-thread-3 is executing task pool-1-thread-1 is executing task pool-1-thread-2 is executing task pool-1-thread-4 is executing task
CachedThreadPool
Cacheable thread pool, when the number of threads exceeds the currently required number, Excess threads will be recycled into the thread pool and automatically destroyed when no longer needed. If the thread pool has no available threads and a new task arrives, the thread pool will create a new thread to execute the task until the thread pool size reaches the limit of Integer.MAX_VALUE.
Sample code:
ExecutorService executorService = Executors.newCachedThreadPool(); for (int i = 0; i < 10; i++) { executorService.execute(()->{ System.out.println(Thread.currentThread().getName()+" is executing task "); try { Thread.sleep(1000); } catch (InterruptedException e) { e.printStackTrace(); } }); }
Running result:
pool-1-thread-1 is executing task pool-1-thread-2 is executing task pool-1-thread-3 is executing task pool-1-thread-4 is executing task pool-1-thread-5 is executing task pool-1-thread-6 is executing task pool-1-thread-7 is executing task pool-1-thread-8 is executing task pool-1-thread-9 is executing task pool-1-thread-10 is executing task
SingleThreadExecutor
Single-threaded thread pool, with only one worker thread, can ensure that all tasks are executed as specified Executed in the order (FIFO, LIFO, priority, etc.), equivalent to a special FixedThreadPool.
Sample code:
ExecutorService executorService = Executors.newSingleThreadExecutor(); for (int i = 0; i < 10; i++) { executorService.execute(()->{ System.out.println(Thread.currentThread().getName()+" is executing task "); try { Thread.sleep(1000); } catch (InterruptedException e) { e.printStackTrace(); } }); }
Running results:
pool-1-thread-1 is executing task pool-1-thread-1 is executing task pool-1-thread-1 is executing task ......
ScheduledThreadPool
The regularly scheduled thread pool can be scheduled according to the specified delay time or periodically. To execute tasks, you can implement scheduled tasks or periodic tasks. The size of the thread pool can be specified. If not specified, it defaults to Integer.MAX_VALUE.
Sample code:
ScheduledExecutorService scheduledExecutorService = Executors.newScheduledThreadPool(3); ScheduledFuture<?> future = scheduledExecutorService.schedule(()->{ System.out.println(Thread.currentThread().getName()+" is executing delay task "); }, 5, TimeUnit.SECONDS); scheduledExecutorService.scheduleAtFixedRate(()->{ System.out.println(Thread.currentThread().getName()+" is executing periodic task "); }, 2, 3, TimeUnit.SECONDS);
Running results:
pool-1-thread-1 is executing periodic task pool-1-thread-2 is executing periodic task pool-1-thread-3 is executing periodic task pool-1-thread-1 is executing periodic task pool-1-thread-3 is executing periodic task pool-1-thread-2 is executing periodic task pool-1-thread-3 is executing periodic task pool-1-thread-2 is executing periodic task ...... pool-1-thread-1 is executing delay task
Summary
Thread pool is an extremely important concept in multi-threaded development and can effectively Reduce thread creation, destruction, context switching and other overheads, and improve system performance and maintainability. Java provides the Executors class to easily create thread pools, and provides different implementation methods to deal with different application scenarios. When developers use thread pools, they need to choose an appropriate implementation method based on specific needs and load conditions to achieve the best performance and effects.
The above is the detailed content of Thread pool in Java. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics



Guide to Perfect Number in Java. Here we discuss the Definition, How to check Perfect number in Java?, examples with code implementation.

Guide to Weka in Java. Here we discuss the Introduction, how to use weka java, the type of platform, and advantages with examples.

Guide to Smith Number in Java. Here we discuss the Definition, How to check smith number in Java? example with code implementation.

In this article, we have kept the most asked Java Spring Interview Questions with their detailed answers. So that you can crack the interview.

Java 8 introduces the Stream API, providing a powerful and expressive way to process data collections. However, a common question when using Stream is: How to break or return from a forEach operation? Traditional loops allow for early interruption or return, but Stream's forEach method does not directly support this method. This article will explain the reasons and explore alternative methods for implementing premature termination in Stream processing systems. Further reading: Java Stream API improvements Understand Stream forEach The forEach method is a terminal operation that performs one operation on each element in the Stream. Its design intention is

Guide to TimeStamp to Date in Java. Here we also discuss the introduction and how to convert timestamp to date in java along with examples.

Java is a popular programming language that can be learned by both beginners and experienced developers. This tutorial starts with basic concepts and progresses through advanced topics. After installing the Java Development Kit, you can practice programming by creating a simple "Hello, World!" program. After you understand the code, use the command prompt to compile and run the program, and "Hello, World!" will be output on the console. Learning Java starts your programming journey, and as your mastery deepens, you can create more complex applications.

Capsules are three-dimensional geometric figures, composed of a cylinder and a hemisphere at both ends. The volume of the capsule can be calculated by adding the volume of the cylinder and the volume of the hemisphere at both ends. This tutorial will discuss how to calculate the volume of a given capsule in Java using different methods. Capsule volume formula The formula for capsule volume is as follows: Capsule volume = Cylindrical volume Volume Two hemisphere volume in, r: The radius of the hemisphere. h: The height of the cylinder (excluding the hemisphere). Example 1 enter Radius = 5 units Height = 10 units Output Volume = 1570.8 cubic units explain Calculate volume using formula: Volume = π × r2 × h (4
