Scalability design tips in MySQL
MySQL is a popular open source relational database management system that has continued to evolve and develop since its development in the early 1980s. Today, MySQL has become one of the most popular databases for web applications and is the basis for many companies' core business systems. In order to meet the growing data processing needs, MySQL must ensure its scalability and continue to expand outward without affecting performance.
In this article, we will discuss MySQL’s scalability design techniques, including vertical expansion, horizontal expansion, sharding, etc.
Vertical expansion (vertical split)
Vertical expansion is one of the most commonly used scalability techniques in MySQL, which is achieved by adding more hardware resources (such as CPU, memory, storage) to improve system performance. Vertical scaling allows the database to handle larger data volumes faster and to better support concurrent access.
The disadvantages of vertical expansion are mainly cost and performance limitations. Because the cost of hardware is typically higher than another scaling technique (horizontal scaling), this option may not be practical for many small or medium-sized businesses. In addition, due to the architectural limitations of computer hardware, there is always a bottleneck in the performance improvement of vertical expansion.
Horizontal expansion (horizontal splitting)
Horizontal expansion (also known as horizontal slicing or partitioning) is to increase the availability of the database system by distributing data across multiple computer nodes. A method of scalability. Sharding can significantly improve the throughput and availability of the system, allowing the database to handle a large number of queries and requests without reducing performance.
The main methods of horizontal expansion are replication and partitioning. Replication refers to copying data to different servers to ensure that specific services are accessible on multiple nodes and improve system availability and performance. Partitioning distributes data in different databases according to certain rules, and queries different databases according to different rules to improve system performance.
However, there are some problems with horizontal scaling, such as the cost and inefficiency of cross-node data access. In addition, horizontal expansion requires consideration of some issues at the application level, such as how to allocate data, how to merge query results, etc.
Data Partitioning
Before partitioning data, you need to understand the partitioning methods supported by MySQL so that you can choose the partitioning method that suits your business needs. The main partitioning methods supported by MySQL are as follows:
- RANGE (range partitioning)
This method is based on the range partitioning of a certain column. Expression to divide data into different partitions.
- LIST (list partitioning)
This method is based on the partitioning of a certain column value list, which divides the data in the table according to the value list of the specified column.
- HASH (Hash Partition)
Hash partitioning is to allocate the data in the table to a specified number of partitions. The size of each partition is basically the same. You can Avoid uneven distribution of data.
- KEY (key partition)
This method is to partition based on a unique key or primary key. MySQL maps key values into specific partitions, thereby dividing the table into multiple logical partitions.
Database Architecture
When designing a MySQL database for horizontal expansion, its architecture needs to have the ability to expand horizontally. Therefore, it is recommended to design the database architecture as centralized. This means that there can be one or more master nodes that support multiple partitions by replicating from nodes to other nodes.
In this architecture, the master node handles write requests and queries, distributes data to slave nodes, and maintains metadata for the entire system. The slave node is only responsible for responding to read requests and will not affect the verification of whether the data has been successfully modified. Using this centralized architecture, horizontal scalability can be achieved through third-party tools such as MySQL Cluster or Galera Cluster.
Optimizing queries
In MySQL, queries are very important operations, and they account for most of the load on the database server. Therefore, optimizing queries is an important step in improving database performance. The following are some tips for query optimization:
- Index table
Using index tables can significantly improve query efficiency. An index table is usually a table sorted based on a certain column (or columns) so that queries have fast access to the query columns.
- Avoid using SELECT *
Avoid using SELECT * in queries, because it will obtain all columns and rows in the table, resulting in performance degradation.
- Merge query
Combining multiple queries into one query statement can significantly improve the execution effect. Multiple queries can be combined into a single query using JOIN, UNION, or other query operators.
Summary
When designing a MySQL database, scalability is crucial. MySQL provides a variety of scalability design techniques, including vertical expansion, horizontal expansion, data partitioning, etc. It’s important to choose a technique that suits your needs. At the same time, the design of the database architecture is also very important. By implementing some query optimization techniques, you can maximize the performance of your MySQL database.
The above is the detailed content of Scalability design tips in MySQL. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics



MySQL is suitable for beginners because it is simple to install, powerful and easy to manage data. 1. Simple installation and configuration, suitable for a variety of operating systems. 2. Support basic operations such as creating databases and tables, inserting, querying, updating and deleting data. 3. Provide advanced functions such as JOIN operations and subqueries. 4. Performance can be improved through indexing, query optimization and table partitioning. 5. Support backup, recovery and security measures to ensure data security and consistency.

You can open phpMyAdmin through the following steps: 1. Log in to the website control panel; 2. Find and click the phpMyAdmin icon; 3. Enter MySQL credentials; 4. Click "Login".

MySQL is an open source relational database management system. 1) Create database and tables: Use the CREATEDATABASE and CREATETABLE commands. 2) Basic operations: INSERT, UPDATE, DELETE and SELECT. 3) Advanced operations: JOIN, subquery and transaction processing. 4) Debugging skills: Check syntax, data type and permissions. 5) Optimization suggestions: Use indexes, avoid SELECT* and use transactions.

MySQL and SQL are essential skills for developers. 1.MySQL is an open source relational database management system, and SQL is the standard language used to manage and operate databases. 2.MySQL supports multiple storage engines through efficient data storage and retrieval functions, and SQL completes complex data operations through simple statements. 3. Examples of usage include basic queries and advanced queries, such as filtering and sorting by condition. 4. Common errors include syntax errors and performance issues, which can be optimized by checking SQL statements and using EXPLAIN commands. 5. Performance optimization techniques include using indexes, avoiding full table scanning, optimizing JOIN operations and improving code readability.

Create a database using Navicat Premium: Connect to the database server and enter the connection parameters. Right-click on the server and select Create Database. Enter the name of the new database and the specified character set and collation. Connect to the new database and create the table in the Object Browser. Right-click on the table and select Insert Data to insert the data.

You can create a new MySQL connection in Navicat by following the steps: Open the application and select New Connection (Ctrl N). Select "MySQL" as the connection type. Enter the hostname/IP address, port, username, and password. (Optional) Configure advanced options. Save the connection and enter the connection name.

Steps to perform SQL in Navicat: Connect to the database. Create a SQL Editor window. Write SQL queries or scripts. Click the Run button to execute a query or script. View the results (if the query is executed).

Common errors and solutions when connecting to databases: Username or password (Error 1045) Firewall blocks connection (Error 2003) Connection timeout (Error 10060) Unable to use socket connection (Error 1042) SSL connection error (Error 10055) Too many connection attempts result in the host being blocked (Error 1129) Database does not exist (Error 1049) No permission to connect to database (Error 1000)
