Home Java javaTutorial Using ZooKeeper for distributed coordination in Java API development

Using ZooKeeper for distributed coordination in Java API development

Jun 17, 2023 pm 10:37 PM
Distributed coordination zookeeper java api

With the continuous improvement of computer system performance and the continuous reduction of hardware costs, distributed systems are becoming more and more important in the field of modern computing. Along with this, the demand for distributed computing continues to expand, and the coordination and management solutions for distributed systems become increasingly important.

There are many solutions to achieve distributed coordination, and ZooKeeper is one of the popular solutions. ZooKeeper is one of the sub-projects of the Apache Hadoop project. It provides a reliable distributed coordination service, making it easier for application developers to implement distributed systems.

Using ZooKeeper for distributed coordination in Java API development has become a hot topic. This article will explore some basic concepts of ZooKeeper and provide practical examples to illustrate how to use ZooKeeper for distributed coordination in Java. .

Introduction to ZooKeeper

ZooKeeper is a distributed service designed to coordinate distributed applications. The main goal of ZooKeeper is to provide developers with a relatively simple coordination service so that they can focus on writing applications.

ZooKeeper has the following characteristics:

  • ZooKeeper is a distributed service that can be deployed through multiple nodes to provide high availability.
  • ZooKeeper is designed as an architecture with one master node and multiple slave nodes. In this structure, the master node is responsible for coordinating and managing slave nodes and ensuring that data is stored securely.
  • ZooKeeper tracks the status and changes of nodes by using "ZooKeeper temporary ordered nodes". These nodes are a special type of node that establishes a one-time connection between their creator and the ZooKeeper service. If the connection is lost, the node will be deleted, thus ensuring that the node status is updated in a timely manner.
  • ZooKeeper can manage the consistency and integrity of data by using the version control function. When using version control, ZooKeeper will increment the version number of each node.

Basic operations of ZooKeeper

When using ZooKeeper for distributed coordination, the most commonly used operations are creating nodes, reading nodes, and monitoring the status of nodes.

Create Node

To create a node, you need to provide the node path and node data. The node will be added to the ZooKeeper service as a subdirectory. If the node created is an ephemeral node, it can only be accessed as long as the connection between the client that created it and the ZooKeeper service is valid.

The following is sample code for creating a node using the ZooKeeper API:

ZooKeeper zk = new ZooKeeper("localhost:2181", 3000, null);
String nodePath = "/testNode";
byte[] data = "nodeData".getBytes();
CreateMode createMode = CreateMode.EPHEMERAL;
zk.create(nodePath, data, ZooDefs.Ids.OPEN_ACL_UNSAFE, createMode);
Copy after login

Reading a node

You can read and obtain the contents of a node by using the ZooKeeper API. The following is a sample code for reading nodes using the Java API:

ZooKeeper zk = new ZooKeeper("localhost:2181", 3000, null);
String nodePath = "/testNode";
byte[] data = zk.getData(nodePath, false, null);
Copy after login

Monitoring nodes

Monitoring nodes allows the client to be notified of node changes, so that the node status can be updated. The following is a sample code for monitoring nodes using the ZooKeeper API:

ZooKeeper zk = new ZooKeeper("localhost:2181", 3000, null);
String nodePath = "/testNode";
Watcher watcher = new Watcher() {
   public void process(WatchedEvent event) {
      // do something
   }
};
byte[] data = zk.getData(nodePath, watcher, null);
Copy after login

Example of using ZooKeeper for distributed coordination

In the following example, we will implement a simple distributed application using the ZooKeeper API , the application will implement a simple leader election protocol where multiple processes will compete to become the leader. In this case, we will use ZooKeeper ephemeral nodes to implement the leader election functionality.

The following is the sample code:

import java.util.List;
import org.apache.zookeeper.CreateMode;
import org.apache.zookeeper.KeeperException;
import org.apache.zookeeper.WatchedEvent;
import org.apache.zookeeper.Watcher;
import org.apache.zookeeper.ZooDefs;
import org.apache.zookeeper.ZooKeeper;
import org.apache.zookeeper.KeeperException.NodeExistsException;
import org.apache.zookeeper.data.Stat;
 
public class LeaderElection implements Watcher {
    
   String znode = "/leader_election";    

   ZooKeeper zk;
   String serverId = Integer.toHexString((int)(Math.random() * 1000000));
    
   boolean isLeader = false;
    
   public void start() throws Exception{
       
      String serverPath = znode + "/" + serverId;
 
      zk = new ZooKeeper("localhost:2181", 3000, this); 

      while(zk.getState() == ZooKeeper.States.CONNECTING){
         
         Thread.sleep(500); 

      }
       
      while(true){
          
        try{
        
            // create the node with EPHEMERAL and SEQUENTIAL flags
            
            zk.create(serverPath, null, ZooDefs.Ids.OPEN_ACL_UNSAFE,
              CreateMode.EPHEMERAL);
          
            isLeader = true; 

            doLeaderAction();
            break;

         } catch (NodeExistsException e){
                
            isLeader = false;
            break; 

         } catch (InterruptedException e) {
             
             throw e;
             
         } catch (Exception e) {
             
             throw new RuntimeException(e); 
             
         }
      }
   }
    
   public void stop() throws Exception{
       
      zk.close(); 
       
   }
   
   void doLeaderAction() throws Exception {
       
      System.out.println("Becoming leader: " + serverId);
       
      try {            
               
         Thread.sleep(6000);
               
      } catch (InterruptedException e) {

         System.err.println("Interrupted while " +
               "sleeping during leadership.");
         
         Thread.currentThread().interrupt();
      } finally {

         try {               
            System.out.println("Ending leader: " + serverId);
         } catch (Exception e) {
            System.err.println("Error ending leadership."); 
         }
      }
   }
    
   public void process(WatchedEvent e){
       
      System.out.println(e.toString() + ", " + serverId);
      try {
        electLeader();
      } catch (Exception ex) {
        ex.printStackTrace();
      }   
   }
    
   void electLeader() throws Exception {
       
      Stat predecessorStat = null;
      String predecessor = null;
      
      List<String> children = zk.getChildren(znode, false); //(watcher not needed for this operation)
      
      int currentId = Integer.parseInt(serverId, 16); 
       
      for(String child : children){
          
        int childId = Integer.parseInt(child, 16);
        
        if(childId < currentId) {
            
            if(predecessorStat == null){
                
                predecessor = child; 
                predecessorStat = zk.exists(znode + "/" + child, true); 

            } else {
                
                Stat stat = zk.exists(znode + "/" + child, true);
              
                if(stat.getMzxid() < predecessorStat.getMzxid()){
                    
                    predecessor = child; 
                    predecessorStat = stat; 
                }               
            }
        }

      }
       
      if(predecessor == null){
           
        System.out.println("No active group members, " + serverId + " as leader.");
        //...provisional leader code here
           
      } else{ // watch the predecessor node waiting for it to go
                // ...down or to receive a message that it is was elected leader too.        
        System.out.println("Watching group member with higher ID: " + predecessor);
      }         
   }
   
   public static void main(String[] args) throws Exception {
          
      LeaderElection election = new LeaderElection();
      
      election.start();
       
   }
}
Copy after login

In the above sample code, we first create a znode subdirectory that is used to maintain the participation status of all processes participating in leader election. Next, we create a temporary ordered ZooKeeper node that represents a given actor. As mentioned before, ZooKeeper establishes a one-time connection between the client and the Zk value. After we create this temporary node, if the client connection is lost, the node will be deleted. Therefore, if a process discovers that a node with the same node name already exists when establishing a node, the process will not become the leader.

If the client successfully creates the temporary node, the client will become the leader. Here we can call the doLeaderAction() method which represents the action the leader will perform. In this example, the leader will perform a simple 6-second operation.

If the client connection has been lost or any error occurs, the process verifies the nodes under the existing directory to determine which one becomes the new leader.

Conclusion

Distributed coordination and management is one of the most important issues in the field of modern computing, and the application of distributed systems is becoming more and more popular. ZooKeeper is a popular solution that makes it easier for developers to implement distributed systems. In Java API development, the main operations of using ZooKeeper for distributed coordination include creating nodes, reading nodes, and monitoring the status of nodes. Through the sample code in this article, you can see how to use ZooKeeper to implement the leader election protocol and other distributed coordination schemes in Java.

The above is the detailed content of Using ZooKeeper for distributed coordination in Java API development. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

Repo: How To Revive Teammates
1 months ago By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
2 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
Hello Kitty Island Adventure: How To Get Giant Seeds
1 months ago By 尊渡假赌尊渡假赌尊渡假赌

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

Using Imgscalr for image processing in Java API development Using Imgscalr for image processing in Java API development Jun 18, 2023 am 08:40 AM

Using Imgscalr for image processing in Java API development With the development of mobile Internet and the popularity of Internet advertising, images have become an indispensable element in many applications. Whether it is displaying products, building social circles, or enhancing user experience, images play an important role. In applications, it is often necessary to perform operations such as cropping, scaling, and rotating images, which requires the use of some image processing tools. Imgscalr is a very commonly used image in Java API development.

What are the free API interface websites? What are the free API interface websites? Jan 05, 2024 am 11:33 AM

Free api interface website: 1. UomgAPI: a platform that provides stable and fast free API services, with over 100 API interfaces; 2. free-api: provides multiple free API interfaces; 3. JSON API: provides free data API interface; 4. AutoNavi Open Platform: Provides map-related API interfaces; 5. Face recognition Face++: Provides face recognition-related API interfaces; 6. Speed ​​data: Provides over a hundred free API interfaces, suitable for various needs In the case of data sources; 7. Aggregate data, etc.

How to implement image verification code in Java API development How to implement image verification code in Java API development Jun 18, 2023 am 09:22 AM

With the rapid development of Internet technology, in order to ensure system security, verification codes have become an essential part of every system. Among them, picture verification code is favored by developers due to its ease of use and security. This article will introduce the specific method of implementing image verification code in JavaAPI development. 1. What is picture verification code? Picture verification code is a way of human-machine verification through pictures. It usually consists of a random combination of pictures containing numbers, letters, symbols, etc., which improves the security of the system. Its working principle includes

PHP implements open source ETCD distributed coordination service PHP implements open source ETCD distributed coordination service Jun 18, 2023 pm 01:59 PM

With the rapid development of the Internet, distributed architecture has received more and more attention. For better distributed management, we need an efficient tool to coordinate and manage the interaction and data status between different services. ETCD is a high-performance, distributed key-value storage system that provides powerful distributed service discovery and configuration. This article will introduce how to use PHP to implement ETCD distributed coordination services to help you better understand and apply ETCD. 1. Introduction to ETCD ETCD is a distributed consistent key value written in Go language.

What are the common protocols for Java network programming? What are the common protocols for Java network programming? Apr 15, 2024 am 11:33 AM

Commonly used protocols in Java network programming include: TCP/IP: used for reliable data transmission and connection management. HTTP: used for web data transmission. HTTPS: A secure version of HTTP that uses encryption to transmit data. UDP: For fast but unstable data transfer. JDBC: used to interact with relational databases.

Using Jgroups for distributed communication in Java API development Using Jgroups for distributed communication in Java API development Jun 18, 2023 pm 11:04 PM

Using JGroups for distributed communication in JavaAPI development With the rapid development of the Internet and the popularity of cloud computing, distributed systems have become one of the important trends in today's Internet development. In a distributed system, different nodes need to communicate and collaborate with each other to achieve high availability, high performance, high scalability and other characteristics of the distributed system. Distributed communication is a crucial part of it. JGroups is a Java library that supports multicast and distributed collaboration. It provides a series of

What is j2ee and what technologies it includes What is j2ee and what technologies it includes Apr 14, 2024 pm 09:06 PM

J2EE is a Java platform designed for developing enterprise applications and includes the following technologies: Java Servlet and JSPJava Enterprise Beans (EJB)Java Persistence API (JPA)Java API for XML Web Services (JAX-WS)JavaMailJava Message Service ( JMS)Java Transaction API (JTA)Java Naming and Directory Interface (JNDI)

JAX-RS vs. Spring MVC: A battle between RESTful giants JAX-RS vs. Spring MVC: A battle between RESTful giants Feb 29, 2024 pm 05:16 PM

Introduction RESTful APIs have become an integral part of modern WEB applications. They provide a standardized approach to creating and using Web services, thereby improving portability, scalability, and ease of use. In the Java ecosystem, JAX-RS and springmvc are the two most popular frameworks for building RESTful APIs. This article will take an in-depth look at both frameworks, comparing their features, advantages, and disadvantages to help you make an informed decision. JAX-RS: JAX-RSAPI JAX-RS (JavaAPI for RESTful Web Services) is a standard JAX-RSAPI developed by JavaEE for developing REST

See all articles