Detailed explanation of common sorting algorithms implemented in Java
Sorting algorithms are an important concept in computer science and are a core part of many applications. In daily life and work, we often need to sort data, such as sorting lists, sorting values, etc. Java, as a widely used programming language, provides many built-in sorting algorithms. This article will provide a detailed introduction to common sorting algorithms implemented in Java.
1. Bubble Sort
Bubble sort is one of the simplest but slowest sorting algorithms. It iterates through the entire array, comparing adjacent elements and moving larger values to the right step by step, eventually moving the largest element to the end of the array. This process is similar to the process of bubbles rising from the bottom of the water to the surface, hence the name bubble sort.
The following is the bubble sorting algorithm implemented in Java:
public static void bubbleSort(int[] arr) { int n = arr.length; for (int i = 0; i < n - 1; i++) { for (int j = 0; j < n - i - 1; j++) { if (arr[j] > arr[j + 1]) { int temp = arr[j]; arr[j] = arr[j + 1]; arr[j + 1] = temp; } } } }
Time complexity: O(n^2)
2. Selection Sort
Selection sort is another simple sorting algorithm that continuously selects the smallest unsorted element and moves it to the end of the sorted part. Selection sort is similar to bubble sort, but it does not require constant exchange of elements in each iteration, making it faster.
The following is the selection sort algorithm implemented in Java:
public static void selectionSort(int[] arr) { int n = arr.length; for (int i = 0; i < n - 1; i++) { int min = i; for (int j = i + 1; j < n; j++) { if (arr[j] < arr[min]) { min = j; } } int temp = arr[min]; arr[min] = arr[i]; arr[i] = temp; } }
Time complexity: O(n^2)
3. Insertion Sort
Insertion sort is a more efficient sorting algorithm. It finds the position in the sorted array and inserts the unsorted elements into the correct position. Insertion sort is suitable for smaller data sets due to fewer swaps.
The following is the insertion sort algorithm implemented in Java:
public static void insertionSort(int[] arr) { int n = arr.length; for (int i = 1; i < n; i++) { int key = arr[i]; int j = i - 1; while (j >= 0 && arr[j] > key) { arr[j + 1] = arr[j]; j--; } arr[j + 1] = key; } }
Time complexity: O(n^2)
4. Quick Sort (Quick Sort)
Quick sort is an efficient sorting algorithm that uses the divide-and-conquer idea to split the array into smaller sub-arrays, then sort the sub-arrays through recursion, and merge them to form the final sort result. The key to quick sort is to select the middle element and sort by size.
The following is the quick sort algorithm implemented in Java:
public static void quickSort(int[] arr, int low, int high) { if (low < high) { int pi = partition(arr, low, high); quickSort(arr, low, pi - 1); quickSort(arr, pi + 1, high); } } public static int partition(int[] arr, int low, int high) { int pivot = arr[high]; int i = low - 1; for (int j = low; j < high; j++) { if (arr[j] < pivot) { i++; int temp = arr[i]; arr[i] = arr[j]; arr[j] = temp; } } int temp = arr[i + 1]; arr[i + 1] = arr[high]; arr[high] = temp; return i + 1; }
Time complexity: O(n log n)
5. Merge Sort (Merge Sort)
Merge sort is another common sorting algorithm that uses the divide-and-conquer idea to split the array into smaller sub-arrays, and then sort and merge them one by one to generate the final sort result. Merge sort is generally slower than quick sort, but it is more stable.
The following is the merge sort algorithm implemented in Java:
public static void mergeSort(int[] arr, int l, int r) { if (l < r) { int m = (l + r) / 2; mergeSort(arr, l, m); mergeSort(arr, m + 1, r); merge(arr, l, m, r); } } public static void merge(int[] arr, int l, int m, int r) { int n1 = m - l + 1; int n2 = r - m; int[] L = new int[n1]; int[] R = new int[n2]; for (int i = 0; i < n1; i++) { L[i] = arr[l + i]; } for (int j = 0; j < n2; j++) { R[j] = arr[m + j + 1]; } int i = 0, j = 0; int k = l; while (i < n1 && j < n2) { if (L[i] <= R[j]) { arr[k] = L[i]; i++; } else { arr[k] = R[j]; j++; } k++; } while (i < n1) { arr[k] = L[i]; i++; k++; } while (j < n2) { arr[k] = R[j]; j++; k++; } }
Time complexity: O(n log n)
Conclusion
The above are common in Java sorting algorithms and their implementation details. Bubble sort and selection sort are simpler but have higher time complexity; insertion sort is faster and suitable for smaller data sets; quick sort is faster but unstable; merge sort is stable but slower. In actual use, selection needs to be made based on different data samples and actual needs.
The above is the detailed content of Detailed explanation of common sorting algorithms implemented in Java. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics



Guide to Perfect Number in Java. Here we discuss the Definition, How to check Perfect number in Java?, examples with code implementation.

Guide to Weka in Java. Here we discuss the Introduction, how to use weka java, the type of platform, and advantages with examples.

Guide to Smith Number in Java. Here we discuss the Definition, How to check smith number in Java? example with code implementation.

In this article, we have kept the most asked Java Spring Interview Questions with their detailed answers. So that you can crack the interview.

Java 8 introduces the Stream API, providing a powerful and expressive way to process data collections. However, a common question when using Stream is: How to break or return from a forEach operation? Traditional loops allow for early interruption or return, but Stream's forEach method does not directly support this method. This article will explain the reasons and explore alternative methods for implementing premature termination in Stream processing systems. Further reading: Java Stream API improvements Understand Stream forEach The forEach method is a terminal operation that performs one operation on each element in the Stream. Its design intention is

Guide to TimeStamp to Date in Java. Here we also discuss the introduction and how to convert timestamp to date in java along with examples.

Capsules are three-dimensional geometric figures, composed of a cylinder and a hemisphere at both ends. The volume of the capsule can be calculated by adding the volume of the cylinder and the volume of the hemisphere at both ends. This tutorial will discuss how to calculate the volume of a given capsule in Java using different methods. Capsule volume formula The formula for capsule volume is as follows: Capsule volume = Cylindrical volume Volume Two hemisphere volume in, r: The radius of the hemisphere. h: The height of the cylinder (excluding the hemisphere). Example 1 enter Radius = 5 units Height = 10 units Output Volume = 1570.8 cubic units explain Calculate volume using formula: Volume = π × r2 × h (4

Java is a popular programming language that can be learned by both beginners and experienced developers. This tutorial starts with basic concepts and progresses through advanced topics. After installing the Java Development Kit, you can practice programming by creating a simple "Hello, World!" program. After you understand the code, use the command prompt to compile and run the program, and "Hello, World!" will be output on the console. Learning Java starts your programming journey, and as your mastery deepens, you can create more complex applications.
