Home Backend Development Python Tutorial Python server programming: YAML format parsing using PyYAML

Python server programming: YAML format parsing using PyYAML

Jun 19, 2023 am 10:33 AM
python Server programming pyyaml

Python server programming: Using PyYAML for YAML format parsing

With the rapid development of Internet technology, server programming has become more and more important. As a powerful programming language, Python is becoming more and more popular among developers. PyYAML is one of the most commonly used YAML format parsers in Python. This article will introduce how to use PyYAML to parse YAML format to help developers better program Python servers.

What is YAML?

YAML (Yet Another Markup Language) is a lightweight data exchange format. Compared with data formats such as XML and JSON, YAML is a format that is easier to read and write. Data in YAML format can be serialized and read and understood by humans. YAML was originally developed to solve the problem of XML being cumbersome and difficult to read.

YAML format example:

- name: Alice
  age: 25
  occupation: programmer
- name: Bob
  age: 30
  occupation: designer
Copy after login

Using PyYAML to parse YAML format

PyYAML is one of the most commonly used YAML format parsers in Python. It is a full-featured YAML parser that supports all core features of YAML 1.1 and 1.2. It is very simple to use PyYAML to parse the YAML format. You only need to convert the YAML format data into a Python object through the yaml.load() method.

import yaml

with open("data.yaml", 'r') as stream:
    data = yaml.load(stream)

print(data)
Copy after login

The above code reads and converts the YAML format data in the data.yaml file into a Python object, and finally prints the output.

In PyYAML, you can also use the yaml.dump() method to convert Python objects into YAML format data.

import yaml

data = [
    {'name': 'Alice', 'age': 25, 'occupation': 'programmer'},
    {'name': 'Bob', 'age': 30, 'occupation': 'designer'}
]

print(yaml.dump(data))
Copy after login

The above code converts the Python list into YAML format data and prints the output.

Advanced features of PyYAML

In addition to basic YAML format parsing and serialization, PyYAML also provides many advanced features, including type conversion, custom tags, validation, and extensions. Next, we'll look at some of these features in more detail.

Type conversion

PyYAML supports automatic conversion of data in YAML format to Python built-in types, including strings, integers, floating point numbers, dictionaries and lists, etc. For example, read the following YAML format data as a Python object:

date: 2021-06-25
count: 300
price: 99.99
Copy after login

During the reading process, PyYAML will automatically convert the date field to Python's datetime.dateObject, the count field is converted to Python's integer type, and the price field is converted to Python's floating point type.

Custom tags

PyYAML supports custom tags, which allows you to convert custom Python objects into YAML format data and convert them back when reading YAML data original object. For example, define the following custom class:

import datetime

class CustomDate:
    def __init__(self, year, month, day):
        self.date = datetime.date(year, month, day)
Copy after login

Then, we can use the following code to convert the custom class into YAML format:

import yaml

def custom_date_representer(dumper, data):
    return dumper.represent_scalar('!CustomDate', '{}/{}/{}'.format(data.date.year, data.date.month, data.date.day))

def custom_date_constructor(loader, node):
    value = loader.construct_scalar(node)
    year, month, day = map(int, value.split('/'))
    return CustomDate(year, month, day)

data = [
    CustomDate(2021, 6, 25),
    CustomDate(2021, 6, 26)
]

yaml.add_representer(CustomDate, custom_date_representer)
yaml.add_constructor('!CustomDate', custom_date_constructor)

print(yaml.dump(data))
Copy after login

In the above code, we register the custom tag!CustomDate, and defines the corresponding representer and constructor methods to convert the custom class into YAML format and restore it to the original object.

Validation and Extension

PyYAML also provides validation and extension functions, including verifying the correctness of YAML format data and registering new tags. For example, you can use the following code to verify the correctness of YAML format data:

import yaml

with open("data.yaml", 'r') as stream:
    try:
        data = yaml.safe_load(stream)
    except yaml.YAMLError as exc:
        print(exc)
Copy after login

The above code uses the yaml.safe_load() method to load YAML format data and output the corresponding data based on the correctness of the data. information.

At the same time, you can also use the following code to register a new tag:

import yaml

class CustomType:
    pass

def represent_custom_type(dumper, data):
    return dumper.represent_scalar('!CustomType', None)

yaml.add_representer(CustomType, represent_custom_type)

data = CustomType()

print(yaml.dump(data))
Copy after login

In the above code, we register the custom class CustomType as a new tag !CustomType, and defines the corresponding representer method to convert it into YAML format data.

Summary

This article introduces how to use PyYAML to parse and serialize YAML format, and introduces some advanced functions of PyYAML, including type conversion, custom tags, validation and extension, etc. Through the introduction of this article, I believe readers can have a deeper understanding of the use of PyYAML and get better applications in Python server programming.

The above is the detailed content of Python server programming: YAML format parsing using PyYAML. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
2 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
Repo: How To Revive Teammates
4 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
Hello Kitty Island Adventure: How To Get Giant Seeds
4 weeks ago By 尊渡假赌尊渡假赌尊渡假赌

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

How to solve the permissions problem encountered when viewing Python version in Linux terminal? How to solve the permissions problem encountered when viewing Python version in Linux terminal? Apr 01, 2025 pm 05:09 PM

Solution to permission issues when viewing Python version in Linux terminal When you try to view Python version in Linux terminal, enter python...

How to efficiently copy the entire column of one DataFrame into another DataFrame with different structures in Python? How to efficiently copy the entire column of one DataFrame into another DataFrame with different structures in Python? Apr 01, 2025 pm 11:15 PM

When using Python's pandas library, how to copy whole columns between two DataFrames with different structures is a common problem. Suppose we have two Dats...

Python hourglass graph drawing: How to avoid variable undefined errors? Python hourglass graph drawing: How to avoid variable undefined errors? Apr 01, 2025 pm 06:27 PM

Getting started with Python: Hourglass Graphic Drawing and Input Verification This article will solve the variable definition problem encountered by a Python novice in the hourglass Graphic Drawing Program. Code...

Python Cross-platform Desktop Application Development: Which GUI Library is the best for you? Python Cross-platform Desktop Application Development: Which GUI Library is the best for you? Apr 01, 2025 pm 05:24 PM

Choice of Python Cross-platform desktop application development library Many Python developers want to develop desktop applications that can run on both Windows and Linux systems...

Do Google and AWS provide public PyPI image sources? Do Google and AWS provide public PyPI image sources? Apr 01, 2025 pm 05:15 PM

Many developers rely on PyPI (PythonPackageIndex)...

How to efficiently count and sort large product data sets in Python? How to efficiently count and sort large product data sets in Python? Apr 01, 2025 pm 08:03 PM

Data Conversion and Statistics: Efficient Processing of Large Data Sets This article will introduce in detail how to convert a data list containing product information to another containing...

How to optimize processing of high-resolution images in Python to find precise white circular areas? How to optimize processing of high-resolution images in Python to find precise white circular areas? Apr 01, 2025 pm 06:12 PM

How to handle high resolution images in Python to find white areas? Processing a high-resolution picture of 9000x7000 pixels, how to accurately find two of the picture...

How to solve the problem of file name encoding when connecting to FTP server in Python? How to solve the problem of file name encoding when connecting to FTP server in Python? Apr 01, 2025 pm 06:21 PM

When using Python to connect to an FTP server, you may encounter encoding problems when obtaining files in the specified directory and downloading them, especially text on the FTP server...

See all articles