Home Database Redis Detailed explanation of Redis implementation of current limiting algorithm

Detailed explanation of Redis implementation of current limiting algorithm

Jun 20, 2023 pm 05:24 PM
redis Detailed explanation Current limiting algorithm

In Internet applications, current limiting is a very important technical means. It can smoothly handle high concurrent traffic and ensure the stability and availability of services. As a high-performance, distributed NoSQL database, Redis has some features that can well support the implementation of current limiting algorithms. This article will introduce in detail the application of Redis in current limiting.

  1. Token Bucket Algorithm

The token bucket algorithm is a relatively common current limiting algorithm, which is based on a bucket and a token generator. A certain number of tokens are stored in the bucket, each token represents a request, and the token generator generates tokens at a certain rate and adds them to the bucket. When a request comes, if there is a token in the bucket, the request is allowed to pass and a token is consumed from the bucket, otherwise the request is rejected.

The core idea of ​​the token bucket algorithm is to limit the number of concurrent requests through the number of tokens in the bucket, while the token generator can control the processing rate of requests. In Redis, the token bucket algorithm can be implemented by using ordered sets. For example, members in an ordered set can be represented as tokens, and their scores represent the token's expiration timestamp. When a request comes, you can use the ZREVRANGEBYSCORE command to obtain the number of unexpired tokens in the current bucket.

  1. Leaky bucket algorithm

The leaky bucket algorithm is also a common current limiting algorithm. The difference between it and the token bucket algorithm is that the leaky bucket algorithm does not behave like the token bucket algorithm. Instead of generating tokens periodically like the card bucket algorithm, it maintains a constant outflow rate and distributes requests evenly over different time periods. This can effectively handle request traffic smoothly and prevent sudden requests from causing service instability.

In Redis, you can use a zset to simulate a leaky bucket, where each member represents a request, and its score represents the timestamp of the request's arrival. When a new request arrives, you can use the ZREVRANGE command to obtain the number of requests in the current leaky bucket to determine whether to allow the new request to pass. If allowed to pass, new requests are added to the zset and expired requests are removed from the zset using the ZREMRANGEBYSCORE command.

  1. Counter algorithm

The counter algorithm is a simple and crude current limiting algorithm. It is based on a counter and a time window. When the number of requests within the time window reaches a certain When the threshold is reached, subsequent requests will be rejected. In Redis, you can use a counter and an expiration time to implement the counter algorithm. For example, you can use the INCR command to increment the counter. When the counter exceeds the specified threshold, it means that there are too many requests and need to be rejected.

  1. Lua script implementation

In addition to the three common current limiting algorithms mentioned above, you can also use Lua scripts to implement custom current limiting algorithms. Lua scripts can access Redis data structures and commands and have strong flexibility and scalability. For example, a current limiter based on the time window and leaky bucket algorithm can be implemented in a Lua script. The code is as follows:

local limit_key = KEYS[1]
local limit = tonumber(ARGV[1])
local interval = tonumber(ARGV[2])
local current_time = tonumber(redis.call('TIME')[1])
local current_count = #redis.call('zrangebyscore', limit_key, '-inf', '+inf')
redis.call('zremrangebyscore', limit_key, '-inf', current_time - interval)
if current_count < limit then
redis.call('zadd', limit_key, current_time, current_time)
return 1
else
return 0
end
Copy after login

In the above code, limit_key represents the name of the leaky bucket, and limit represents the number of times the leaky bucket can accommodate. The maximum number of requests, interval represents the size of the time window (in seconds), and current_time represents the current timestamp. First, the script uses the zrangebyscore command to obtain the number of unexpired requests in the current leaky bucket. Then, use the zremrangebyscore command to delete expired requests. Next, determine whether the number of requests in the leaky bucket has reached the upper limit. If it has not reached the upper limit, use the zadd command to add new requests to the leaky bucket and return the flag that allows it to pass. Otherwise, a rejection flag is returned. Finally, during business processing, this script needs to be used in conjunction with the EVALSHA command to avoid the overhead of repeatedly compiling Lua code.

Summary

Current limiting is a very important technology in Internet applications. It can smoothly handle high concurrent traffic and ensure the stability and availability of services. In Redis, you can use common current limiting algorithms such as token bucket algorithm, leaky bucket algorithm, and counter algorithm, or you can use Lua scripts to customize the current limiter. These methods can effectively control request traffic and ensure the stability and availability of services.

The above is the detailed content of Detailed explanation of Redis implementation of current limiting algorithm. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
2 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
Repo: How To Revive Teammates
4 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
Hello Kitty Island Adventure: How To Get Giant Seeds
4 weeks ago By 尊渡假赌尊渡假赌尊渡假赌

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

Solution to 0x80242008 error when installing Windows 11 10.0.22000.100 Solution to 0x80242008 error when installing Windows 11 10.0.22000.100 May 08, 2024 pm 03:50 PM

1. Start the [Start] menu, enter [cmd], right-click [Command Prompt], and select Run as [Administrator]. 2. Enter the following commands in sequence (copy and paste carefully): SCconfigwuauservstart=auto, press Enter SCconfigbitsstart=auto, press Enter SCconfigcryptsvcstart=auto, press Enter SCconfigtrustedinstallerstart=auto, press Enter SCconfigwuauservtype=share, press Enter netstopwuauserv , press enter netstopcryptS

Analyze PHP function bottlenecks and improve execution efficiency Analyze PHP function bottlenecks and improve execution efficiency Apr 23, 2024 pm 03:42 PM

PHP function bottlenecks lead to low performance, which can be solved through the following steps: locate the bottleneck function and use performance analysis tools. Caching results to reduce recalculations. Process tasks in parallel to improve execution efficiency. Optimize string concatenation, use built-in functions instead. Use built-in functions instead of custom functions.

Golang API caching strategy and optimization Golang API caching strategy and optimization May 07, 2024 pm 02:12 PM

The caching strategy in GolangAPI can improve performance and reduce server load. Commonly used strategies are: LRU, LFU, FIFO and TTL. Optimization techniques include selecting appropriate cache storage, hierarchical caching, invalidation management, and monitoring and tuning. In the practical case, the LRU cache is used to optimize the API for obtaining user information from the database. The data can be quickly retrieved from the cache. Otherwise, the cache can be updated after obtaining it from the database.

Caching mechanism and application practice in PHP development Caching mechanism and application practice in PHP development May 09, 2024 pm 01:30 PM

In PHP development, the caching mechanism improves performance by temporarily storing frequently accessed data in memory or disk, thereby reducing the number of database accesses. Cache types mainly include memory, file and database cache. Caching can be implemented in PHP using built-in functions or third-party libraries, such as cache_get() and Memcache. Common practical applications include caching database query results to optimize query performance and caching page output to speed up rendering. The caching mechanism effectively improves website response speed, enhances user experience and reduces server load.

How to use Redis cache in PHP array pagination? How to use Redis cache in PHP array pagination? May 01, 2024 am 10:48 AM

Using Redis cache can greatly optimize the performance of PHP array paging. This can be achieved through the following steps: Install the Redis client. Connect to the Redis server. Create cache data and store each page of data into a Redis hash with the key "page:{page_number}". Get data from cache and avoid expensive operations on large arrays.

How to upgrade Win11 English 21996 to Simplified Chinese 22000_How to upgrade Win11 English 21996 to Simplified Chinese 22000 How to upgrade Win11 English 21996 to Simplified Chinese 22000_How to upgrade Win11 English 21996 to Simplified Chinese 22000 May 08, 2024 pm 05:10 PM

First you need to set the system language to Simplified Chinese display and restart. Of course, if you have changed the display language to Simplified Chinese before, you can just skip this step. Next, start operating the registry, regedit.exe, directly navigate to HKEY_LOCAL_MACHINESYSTEMCurrentControlSetControlNlsLanguage in the left navigation bar or the upper address bar, and then modify the InstallLanguage key value and Default key value to 0804 (if you want to change it to English en-us, you need First set the system display language to en-us, restart the system and then change everything to 0409) You must restart the system at this point.

Can navicat connect to redis? Can navicat connect to redis? Apr 23, 2024 pm 05:12 PM

Yes, Navicat can connect to Redis, which allows users to manage keys, view values, execute commands, monitor activity, and diagnose problems. To connect to Redis, select the "Redis" connection type in Navicat and enter the server details.

How to find the update file downloaded by Win11_Share the location of the update file downloaded by Win11 How to find the update file downloaded by Win11_Share the location of the update file downloaded by Win11 May 08, 2024 am 10:34 AM

1. First, double-click the [This PC] icon on the desktop to open it. 2. Then double-click the left mouse button to enter [C drive]. System files will generally be automatically stored in C drive. 3. Then find the [windows] folder in the C drive and double-click to enter. 4. After entering the [windows] folder, find the [SoftwareDistribution] folder. 5. After entering, find the [download] folder, which contains all win11 download and update files. 6. If we want to delete these files, just delete them directly in this folder.

See all articles