Distributed task scheduling system based on Spring Cloud
With the complexity of business, many enterprises are faced with a large number of scheduled tasks that need to be executed, and the management and scheduling of these tasks have brought considerable pressure to enterprises. The traditional stand-alone task scheduling system can no longer meet the needs of enterprises, and the distributed task scheduling system has become a necessary choice. This article will introduce the design and implementation of a distributed task scheduling system based on Spring Cloud.
1. System architecture design
Spring Cloud provides a series of tools and frameworks, such as Eureka, Ribbon, Feign, Config, Hystrix, etc. These tools and frameworks enable us to implement distributed task scheduling The system has been of great help. The following is the architecture design diagram of the system:
The system is divided into four parts: task management center, scheduled task service, task executor, and log center.
- Task Management Center: The task management center is responsible for managing scheduled tasks in the entire system, providing operations such as adding, deleting, modifying, and stopping tasks, and pushing task information to the scheduled task service.
- Scheduled task service: Scheduled task service is the core component of the entire system. It receives task information pushed by the task management center and registers the task information into Eureka. At the same time, it regularly scans the task information in the registration center and sends task execution instructions to the task executor based on the task information.
- Task Executor: The task executor is the main component for executing tasks in the system. It is responsible for starting scheduled tasks, executing tasks, and recording task execution logs.
- Log center: The log center collects task execution logs generated by task executors and provides log query and log analysis functions.
2. System implementation
- Implementation of task management center
The task management center is developed using the SpringBoot framework and Thymeleaf. Page rendering. In the task management center, we can add, delete, modify, deactivate, and enable scheduled tasks. On the page, we display the basic information of the scheduled task and the scheduling rules of the task.
- Implementation of scheduled task service
In the implementation of scheduled task service, we mainly use SpringCloud components such as Eureka, Ribbon, Feign, and Config. We use Eureka as the registration center, the scheduled task service accesses the task executor through Ribbon, uses Feign to make calls between services, and uses Config to implement the configuration center function.
Specifically, we put each task that needs to be scheduled into a Map and register it in Eureka. Every once in a while, the scheduled task service accesses the task executor through Ribbon load balancing and sends task execution instructions to the task executor. If the task execution fails, the task execution log is recorded and sent to the log center.
- Implementation of task executor
The task executor uses Quartz to implement scheduled task scheduling, and uses Feign to accept task execution instructions sent by the scheduled task service. During the task execution process, we store the task execution status, execution log and other information in the database for subsequent query and analysis.
- Implementation of log center
The log center is implemented using the ELK architecture, including three components: Elasticsearch, Logstash and Kibana. Among them, Elasticsearch is used to store logs, Logstash is used to send logs from task executors to Elasticsearch, and Kibana is used to display and query log information.
3. System Optimization
In actual use, we also need to optimize the system to ensure the stability and availability of the system. Some common optimization measures are listed below:
- Load balancing: For the task executor service, we need to use load balancing to avoid single points of failure and ensure system availability.
- Automatic task recovery: When the task executor service stops abnormally, we need to automatically restore the task to the system through the program to avoid task loss.
- Distributed lock: When a task is executed, distributed lock processing needs to be performed on the task to avoid repeated execution of the same task multiple times.
- Asynchronous execution: For some tasks that take a long time, we can use asynchronous execution to put the tasks in the message queue to improve the execution efficiency and reliability of the tasks.
4. Summary
Compared with the traditional stand-alone task scheduling system, the distributed task scheduling system based on Spring Cloud has higher concurrency and better scalability. , better fault tolerance and other advantages. At the same time, it is also an effective choice for enterprises to implement task scheduling. This article introduces the architectural design and implementation process of a distributed task scheduling system based on Spring Cloud, and also discusses some system optimization measures. I believe it will be of some help to everyone.
The above is the detailed content of Distributed task scheduling system based on Spring Cloud. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics



How to use Redis to achieve distributed data synchronization With the development of Internet technology and the increasingly complex application scenarios, the concept of distributed systems is increasingly widely adopted. In distributed systems, data synchronization is an important issue. As a high-performance in-memory database, Redis can not only be used to store data, but can also be used to achieve distributed data synchronization. For distributed data synchronization, there are generally two common modes: publish/subscribe (Publish/Subscribe) mode and master-slave replication (Master-slave).

MongoDB is an open source NoSQL database with high performance, scalability and flexibility. In distributed systems, task scheduling and execution are a key issue. By utilizing the characteristics of MongoDB, distributed task scheduling and execution solutions can be realized. 1. Requirements Analysis for Distributed Task Scheduling In a distributed system, task scheduling is the process of allocating tasks to different nodes for execution. Common task scheduling requirements include: 1. Task request distribution: Send task requests to available execution nodes.

How Redis implements distributed session management requires specific code examples. Distributed session management is one of the hot topics on the Internet today. In the face of high concurrency and large data volumes, traditional session management methods are gradually becoming inadequate. As a high-performance key-value database, Redis provides a distributed session management solution. This article will introduce how to use Redis to implement distributed session management and give specific code examples. 1. Introduction to Redis as a distributed session storage. The traditional session management method is to store session information.

How to use Swoole to implement distributed scheduled task scheduling Introduction: In traditional PHP development, we often use cron to implement scheduled task scheduling, but cron can only execute tasks on a single server and cannot cope with high concurrency scenarios. Swoole is a high-performance asynchronous concurrency framework based on PHP. It provides complete network communication capabilities and multi-process support, allowing us to easily implement distributed scheduled task scheduling. This article will introduce how to use Swoole to implement distributed scheduled task scheduling

Sharing practical experience in Java development: Building a distributed log collection function Introduction: With the rapid development of the Internet and the emergence of large-scale data, the application of distributed systems is becoming more and more widespread. In distributed systems, log collection and analysis are very important. This article will share the experience of building distributed log collection function in Java development, hoping to be helpful to readers. 1. Background introduction In a distributed system, each node generates a large amount of log information. These log information are useful for system performance monitoring, troubleshooting and data analysis.

Using Redis to achieve distributed cache consistency In modern distributed systems, cache plays a very important role. It can greatly reduce the frequency of system access to the database and improve system performance and throughput. In a distributed system, in order to ensure cache consistency, we need to solve the problem of data synchronization between multiple nodes. In this article, we will introduce how to use Redis to achieve distributed cache consistency and give specific code examples. Redis is a high-performance key-value database that supports persistence, replication, and collection

Using Redis to implement distributed task scheduling With the expansion of business and the development of the system, many businesses need to implement distributed task scheduling to ensure that tasks can be executed on multiple nodes at the same time, thereby improving the stability and availability of the system. As a high-performance memory data storage product, Redis has the characteristics of distribution, high availability, and high performance, and is very suitable for implementing distributed task scheduling. This article will introduce how to use Redis to implement distributed task scheduling and provide corresponding code examples. 1. Redis base

How to use the Hyperf framework for task scheduling. In modern web application development, task scheduling is a very important function. It can help us implement various scheduled tasks, queue tasks, etc., and improve the performance and efficiency of the system. In the field of PHP, the Hyperf framework is a very popular high-performance microservice framework. This article will introduce how to use the Hyperf framework for task scheduling and give specific code examples. 1. The basic concept of task scheduling. Task scheduling refers to automatically scheduling tasks according to certain rules and time requirements.
