Home > Database > Mysql Tutorial > mysqlcount(*)会选哪个索引?_MySQL

mysqlcount(*)会选哪个索引?_MySQL

WBOY
Release: 2016-06-01 11:52:42
Original
1130 people have browsed it

今天在查询一个表行数的时候,发现count(1)和count(*)执行效率居然是一样的。这跟Oracle还是有区别的。遂查看两种方式的执行计划:

 

mysql> select count(1) from customer;
+----------+
| count(1) |
+----------+
|   150000 |
+----------+
1 row in set (0.03 sec)

mysql> flush tables;
Query OK, 0 rows affected (0.00 sec)

mysql> select count(*) from customer;
+----------+
| count(*) |
+----------+
|   150000 |
+----------+
1 row in set (0.03 sec)
Copy after login

查看执行计划:

mysql> explain select count(1) from customer;
+----+-------------+----------+-------+---------------+---------------+---------+------+--------+-------------+
| id | select_type | table    | type  | possible_keys | key           | key_len | ref  | rows   | Extra       |
+----+-------------+----------+-------+---------------+---------------+---------+------+--------+-------------+
|  1 | SIMPLE      | customer | index | NULL          | i_c_nationkey | 5       | NULL | 151191 | Using index |
+----+-------------+----------+-------+---------------+---------------+---------+------+--------+-------------+
1 row in set (0.00 sec)

mysql> explain select count(*) from customer;
+----+-------------+----------+-------+---------------+---------------+---------+------+--------+-------------+
| id | select_type | table    | type  | possible_keys | key           | key_len | ref  | rows   | Extra       |
+----+-------------+----------+-------+---------------+---------------+---------+------+--------+-------------+
|  1 | SIMPLE      | customer | index | NULL          | i_c_nationkey | 5       | NULL | 151191 | Using index |
+----+-------------+----------+-------+---------------+---------------+---------+------+--------+-------------+
1 row in set (0.00 sec)

mysql> show index from customer;
+----------+------------+---------------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+---------------+
| Table    | Non_unique | Key_name      | Seq_in_index | Column_name | Collation | Cardinality | Sub_part | Packed | Null | Index_type | Comment | Index_comment |
+----------+------------+---------------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+---------------+
| customer |          0 | PRIMARY       |            1 | c_custkey   | A         |      150525 |     NULL | NULL   |      | BTREE      |         |               |
| customer |          1 | i_c_nationkey |            1 | c_nationkey | A         |          47 |     NULL | NULL   | YES  | BTREE      |         |               |
+----------+------------+---------------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+---------------+
2 rows in set (0.08 sec)
Copy after login

发现不管是count(1)或count(*)都是走的i_c_nationkey这个索引。平时我们检索数据的时候肯定是主键索引效率高,那么我们强制主键索引来看看:

mysql> select count(*) from customer force index(PRIMARY);
+----------+
| count(*) |
+----------+
|   150000 |
+----------+
1 row in set (0.68 sec)
mysql> explain select count(*) from customer force index(PRIMARY);
+----+-------------+----------+-------+---------------+---------+---------+------+--------+-------------+
| id | select_type | table    | type  | possible_keys | key     | key_len | ref  | rows   | Extra       |
+----+-------------+----------+-------+---------------+---------+---------+------+--------+-------------+
|  1 | SIMPLE      | customer | index | NULL          | PRIMARY | 4       | NULL | 150525 | Using index |
+----+-------------+----------+-------+---------------+---------+---------+------+--------+-------------+
1 row in set (0.00 sec)
Copy after login

可以看到走主键索引的时候效率比较差。那么是为什么呢。
平时我们检索一列的时候,基本上等值或范围查询,那么索引基数大的索引必然效率很高。但是在做count(*)的时候并没有检索具体的一行或者一个范围。那么选择基数小的索引对
count操作效率会更高。在做count操作的时候,mysql会遍历每个叶子节点,所以基数越小,效率越高。mysql非聚簇索引叶子节点保存的主键ID,所以需要检索两遍索引。但是这里相对于遍历主键索引。及时检索两遍索引效率也比单纯的检索主键索引快。
那么再以一个表作为证明:

mysql> explain select count(*) from lineitem;
+----+-------------+----------+-------+---------------+--------------+---------+------+---------+-------------+
| id | select_type | table    | type  | possible_keys | key          | key_len | ref  | rows    | Extra       |
+----+-------------+----------+-------+---------------+--------------+---------+------+---------+-------------+
|  1 | SIMPLE      | lineitem | index | NULL          | i_l_shipdate | 4       | NULL | 6008735 | Using index |
+----+-------------+----------+-------+---------------+--------------+---------+------+---------+-------------+
1 row in set (0.00 sec)

mysql> show index from lineitem;
+----------+------------+-----------------------+--------------+---------------+-----------+-------------+----------+--------+------+------------+---------+---------------+
| Table    | Non_unique | Key_name              | Seq_in_index | Column_name   | Collation | Cardinality | Sub_part | Packed | Null | Index_type | Comment | Index_comment |
+----------+------------+-----------------------+--------------+---------------+-----------+-------------+----------+--------+------+------------+---------+---------------+
| lineitem |          0 | PRIMARY               |            1 | l_orderkey    | A         |     2997339 |     NULL | NULL   |      | BTREE      |         |               |
| lineitem |          0 | PRIMARY               |            2 | l_linenumber  | A         |     5994679 |     NULL | NULL   |      | BTREE      |         |               |
| lineitem |          1 | i_l_shipdate          |            1 | l_shipDATE    | A         |        5208 |     NULL | NULL   | YES  | BTREE      |         |               |
| lineitem |          1 | i_l_suppkey_partkey   |            1 | l_partkey     | A         |      428191 |     NULL | NULL   | YES  | BTREE      |         |               |
| lineitem |          1 | i_l_suppkey_partkey   |            2 | l_suppkey     | A         |     1998226 |     NULL | NULL   | YES  | BTREE      |         |               |
| lineitem |          1 | i_l_partkey           |            1 | l_partkey     | A         |      461129 |     NULL | NULL   | YES  | BTREE      |         |               |
| lineitem |          1 | i_l_suppkey           |            1 | l_suppkey     | A         |       19213 |     NULL | NULL   | YES  | BTREE      |         |               |
| lineitem |          1 | i_l_receiptdate       |            1 | l_receiptDATE | A         |          17 |     NULL | NULL   | YES  | BTREE      |         |               |
| lineitem |          1 | i_l_orderkey          |            1 | l_orderkey    | A         |     2997339 |     NULL | NULL   |      | BTREE      |         |               |
| lineitem |          1 | i_l_orderkey_quantity |            1 | l_orderkey    | A         |     1998226 |     NULL | NULL   |      | BTREE      |         |               |
| lineitem |          1 | i_l_orderkey_quantity |            2 | l_quantity    | A         |     5994679 |     NULL | NULL   | YES  | BTREE      |         |               |
| lineitem |          1 | i_l_commitdate        |            1 | l_commitDATE  | A         |        7836 |     NULL | NULL   | YES  | BTREE      |         |               |
+----------+------------+-----------------------+--------------+---------------+-----------+-------------+----------+--------+------+------------+---------+---------------+
12 rows in set (0.96 sec)
Copy after login
这里一看l_shipDATE并不是基数最小的呀,殊不知这个统计信息是不准确的。我们用sql看一下。

mysql> select count(distinct(l_shipDATE)) from lineitem;
+-----------------------------+
| count(distinct(l_shipDATE)) |
+-----------------------------+
|                        2526 |
+-----------------------------+
1 row in set (0.01 sec)
Copy after login
那么比他小的那些列呢?

mysql> select count(distinct(l_receiptDATE)) from lineitem;
+--------------------------------+
| count(distinct(l_receiptDATE)) |
+--------------------------------+
|                           2554 |
+--------------------------------+
1 row in set (0.01 sec)
Copy after login

其他就不看了,这里再次说明mysql选择了基数小的索引。


Related labels:
source:php.cn
Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
Popular Tutorials
More>
Latest Downloads
More>
Web Effects
Website Source Code
Website Materials
Front End Template