


Configuration tips for building Linux smart logistics applications using CMake
Configuration tips for building Linux smart logistics applications using CMake
Abstract:
CMake is a cross-platform build tool that can be used to automate building and managing projects. In this article, we will introduce how to configure and build a Linux smart logistics application using CMake. We will focus on the basic configuration and common functions of CMake, and how to demonstrate its usage through sample code.
- Introduction to CMake
CMake is an open source cross-platform build tool that can be used to automatically generate project build files. It supports different build systems such as GNU Make, Ninja, Visual Studio, etc. CMake uses the CMakeLists.txt file to describe the project's build process and dependencies, and generates corresponding build files based on the file. -
Installing CMake
Installing CMake in a Linux system is very simple. You can use the following command to install:sudo apt-get install cmake
Copy after login Create a CMakeLists.txt file
Create a CMakeLists.txt file in the root directory of the project. This file will be used to describe the configuration and build process of the project. The following is a simple CMakeLists.txt file example:cmake_minimum_required(VERSION 3.10) project(SmartLogisticsApp) # 添加可执行文件 add_executable(smart_logistics_app main.cpp) # 添加库文件 target_link_libraries(smart_logistics_app lib1 lib2) # 添加头文件 target_include_directories(smart_logistics_app PUBLIC include)
Copy after login- Add source files and library files
In the CMakeLists.txt file, use the add_executable command to add source files and the target_link_libraries command to add library files. In the example, we add the main.cpp file as a source file and link the lib1 and lib2 library files. - Add the header file directory
Use the target_include_directories command to add the header file directory. In the example, we add the include directory as a header file directory. Build the project
Build the project using the following command:mkdir build cd build cmake .. make
Copy after loginSample code description
The following is the sample code about the Linux smart logistics application :// main.cpp #include <iostream> #include "vehicle.h" int main() { Vehicle vehicle("ABC123", "Truck"); std::cout << "Vehicle Type: " << vehicle.getType() << std::endl; std::cout << "License Plate: " << vehicle.getLicensePlate() << std::endl; return 0; } // vehicle.h #ifndef VEHICLE_H #define VEHICLE_H #include <string> class Vehicle { public: Vehicle(const std::string& licensePlate, const std::string& type); std::string getType() const; std::string getLicensePlate() const; private: std::string m_licensePlate; std::string m_type; }; #endif // vehicle.cpp #include "vehicle.h" Vehicle::Vehicle(const std::string& licensePlate, const std::string& type) : m_licensePlate(licensePlate), m_type(type) {} std::string Vehicle::getType() const { return m_type; } std::string Vehicle::getLicensePlate() const { return m_licensePlate; }
Copy after login
The above sample code shows a smart logistics application, which contains a vehicle class Vehicle. A Vehicle object is created in the main.cpp file and relevant information is printed.
Conclusion:
This article introduces the basic techniques on how to use CMake to configure and build a Linux smart logistics application. We discussed the CMake installation process and provided an example of a CMakeLists.txt file. Additionally, we provide code for a sample application written in C. Through this article, readers can better understand the usage of CMake and its application in smart logistics applications.
The above is the detailed content of Configuration tips for building Linux smart logistics applications using CMake. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics



The key differences between CentOS and Ubuntu are: origin (CentOS originates from Red Hat, for enterprises; Ubuntu originates from Debian, for individuals), package management (CentOS uses yum, focusing on stability; Ubuntu uses apt, for high update frequency), support cycle (CentOS provides 10 years of support, Ubuntu provides 5 years of LTS support), community support (CentOS focuses on stability, Ubuntu provides a wide range of tutorials and documents), uses (CentOS is biased towards servers, Ubuntu is suitable for servers and desktops), other differences include installation simplicity (CentOS is thin)

CentOS installation steps: Download the ISO image and burn bootable media; boot and select the installation source; select the language and keyboard layout; configure the network; partition the hard disk; set the system clock; create the root user; select the software package; start the installation; restart and boot from the hard disk after the installation is completed.

CentOS will be shut down in 2024 because its upstream distribution, RHEL 8, has been shut down. This shutdown will affect the CentOS 8 system, preventing it from continuing to receive updates. Users should plan for migration, and recommended options include CentOS Stream, AlmaLinux, and Rocky Linux to keep the system safe and stable.

Docker uses Linux kernel features to provide an efficient and isolated application running environment. Its working principle is as follows: 1. The mirror is used as a read-only template, which contains everything you need to run the application; 2. The Union File System (UnionFS) stacks multiple file systems, only storing the differences, saving space and speeding up; 3. The daemon manages the mirrors and containers, and the client uses them for interaction; 4. Namespaces and cgroups implement container isolation and resource limitations; 5. Multiple network modes support container interconnection. Only by understanding these core concepts can you better utilize Docker.

CentOS has been discontinued, alternatives include: 1. Rocky Linux (best compatibility); 2. AlmaLinux (compatible with CentOS); 3. Ubuntu Server (configuration required); 4. Red Hat Enterprise Linux (commercial version, paid license); 5. Oracle Linux (compatible with CentOS and RHEL). When migrating, considerations are: compatibility, availability, support, cost, and community support.

After CentOS is stopped, users can take the following measures to deal with it: Select a compatible distribution: such as AlmaLinux, Rocky Linux, and CentOS Stream. Migrate to commercial distributions: such as Red Hat Enterprise Linux, Oracle Linux. Upgrade to CentOS 9 Stream: Rolling distribution, providing the latest technology. Select other Linux distributions: such as Ubuntu, Debian. Evaluate other options such as containers, virtual machines, or cloud platforms.

How to use Docker Desktop? Docker Desktop is a tool for running Docker containers on local machines. The steps to use include: 1. Install Docker Desktop; 2. Start Docker Desktop; 3. Create Docker image (using Dockerfile); 4. Build Docker image (using docker build); 5. Run Docker container (using docker run).

VS Code system requirements: Operating system: Windows 10 and above, macOS 10.12 and above, Linux distribution processor: minimum 1.6 GHz, recommended 2.0 GHz and above memory: minimum 512 MB, recommended 4 GB and above storage space: minimum 250 MB, recommended 1 GB and above other requirements: stable network connection, Xorg/Wayland (Linux)
