Home Backend Development Python Tutorial Learn Python to implement Qiniu Cloud interface docking and image cropping function

Learn Python to implement Qiniu Cloud interface docking and image cropping function

Jul 05, 2023 pm 10:05 PM
python Image cropping Interface docking Qiniuyun

Learn Python to implement Qiniu Cloud interface docking and realize image cropping function

In modern Internet applications, we often encounter scenarios where images need to be cropped, such as avatar uploading, product display, etc. Qiniu Cloud, as a leading cloud storage and content distribution platform, provides a rich image processing interface, which can easily perform operations such as cropping, scaling, and rotating images. This article will introduce how to use Python language to connect to the Qiniu Cloud interface to implement the image cropping function.

First, we need to create a storage space on Qiniu Cloud and obtain the Access Key and Secret Key. These two keys are important credentials for accessing Qiniu Cloud storage space, please keep them properly.

Next, we need to install the Python Qiniu Cloud SDK, which can be installed through the pip command:

pip install qiniu
Copy after login

After the installation is completed, we can start writing code. First, we need to import the qiniu module:

import qiniu
Copy after login

Then, we need to build a manager object for Qiniu Cloud storage space:

access_key = 'your_access_key'
secret_key = 'your_secret_key'
bucket_name = 'your_bucket_name'
manager = qiniu.Auth(access_key, secret_key)
Copy after login

Among them, access_key and secret_key need to be replaced with what you have on Qiniu Cloud The key of the created storage space, bucket_name is the name of your storage space.

Next, we can use Qiniu Cloud’s image processing interface to crop the image. For example, we want to crop a picture named "example.jpg" to a width of 200 pixels and a height of 300 pixels. The cropped picture is saved as "example_cropped.jpg":

source_url = 'http://your_bucket_name.qiniudn.com/example.jpg'
target_url = 'http://your_bucket_name.qiniudn.com/example_cropped.jpg'
fops = 'imageView2/2/w/200/h/300'
url = manager.private_download_url(source_url)
ret, info = qiniu.urlretrieve(url, 'example.jpg')
if info.status_code == 200:
    ret, info = qiniu.put_file(manager.upload_token(bucket_name, key='example_cropped.jpg'), 'example_cropped.jpg', 'example.jpg', mime_type='image/jpeg')
    if info.status_code == 200:
        print('图片裁剪成功!')
    else:
        print('图片裁剪失败!')
Copy after login

In the above code, source_url is the URL of the image to be cropped. Images stored on Qiniu Cloud have corresponding URLs, which can be obtained by concatenating the storage space name and image file name. target_url is the URL of the cropped image. fops is the parameter of the cropping operation, indicating that the picture view is to be zoomed. The url is the download URL of the image before cropping, generated through the private_download_url method. ret, info = qiniu.urlretrieve(url, 'example.jpg') is used to download the image before cropping and save it as "example.jpg". Then, upload the cropped image to Qiniu Cloud storage space through the put_file method.

After executing the above code, we can see the cropped picture in the Qiniu cloud storage space.

Of course, Qiniu Cloud's image processing interface not only supports cropping, but also supports zoom, rotate, blur and other operations. We can choose the appropriate operation according to actual needs.

This article introduces how to use Python language to connect to the Qiniu Cloud interface to realize the image cropping function. Through the powerful functions of Qiniu Cloud, we can process images quickly and efficiently to improve user experience. At the same time, Qiniu Cloud also provides a powerful CDN acceleration service to ensure that users can quickly access and download cropped images.

The above is the detailed content of Learn Python to implement Qiniu Cloud interface docking and image cropping function. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
1 months ago By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Best Graphic Settings
1 months ago By 尊渡假赌尊渡假赌尊渡假赌
Will R.E.P.O. Have Crossplay?
1 months ago By 尊渡假赌尊渡假赌尊渡假赌

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

PHP and Python: Code Examples and Comparison PHP and Python: Code Examples and Comparison Apr 15, 2025 am 12:07 AM

PHP and Python have their own advantages and disadvantages, and the choice depends on project needs and personal preferences. 1.PHP is suitable for rapid development and maintenance of large-scale web applications. 2. Python dominates the field of data science and machine learning.

Python vs. JavaScript: Community, Libraries, and Resources Python vs. JavaScript: Community, Libraries, and Resources Apr 15, 2025 am 12:16 AM

Python and JavaScript have their own advantages and disadvantages in terms of community, libraries and resources. 1) The Python community is friendly and suitable for beginners, but the front-end development resources are not as rich as JavaScript. 2) Python is powerful in data science and machine learning libraries, while JavaScript is better in front-end development libraries and frameworks. 3) Both have rich learning resources, but Python is suitable for starting with official documents, while JavaScript is better with MDNWebDocs. The choice should be based on project needs and personal interests.

How is the GPU support for PyTorch on CentOS How is the GPU support for PyTorch on CentOS Apr 14, 2025 pm 06:48 PM

Enable PyTorch GPU acceleration on CentOS system requires the installation of CUDA, cuDNN and GPU versions of PyTorch. The following steps will guide you through the process: CUDA and cuDNN installation determine CUDA version compatibility: Use the nvidia-smi command to view the CUDA version supported by your NVIDIA graphics card. For example, your MX450 graphics card may support CUDA11.1 or higher. Download and install CUDAToolkit: Visit the official website of NVIDIACUDAToolkit and download and install the corresponding version according to the highest CUDA version supported by your graphics card. Install cuDNN library:

Detailed explanation of docker principle Detailed explanation of docker principle Apr 14, 2025 pm 11:57 PM

Docker uses Linux kernel features to provide an efficient and isolated application running environment. Its working principle is as follows: 1. The mirror is used as a read-only template, which contains everything you need to run the application; 2. The Union File System (UnionFS) stacks multiple file systems, only storing the differences, saving space and speeding up; 3. The daemon manages the mirrors and containers, and the client uses them for interaction; 4. Namespaces and cgroups implement container isolation and resource limitations; 5. Multiple network modes support container interconnection. Only by understanding these core concepts can you better utilize Docker.

MiniOpen Centos compatibility MiniOpen Centos compatibility Apr 14, 2025 pm 05:45 PM

MinIO Object Storage: High-performance deployment under CentOS system MinIO is a high-performance, distributed object storage system developed based on the Go language, compatible with AmazonS3. It supports a variety of client languages, including Java, Python, JavaScript, and Go. This article will briefly introduce the installation and compatibility of MinIO on CentOS systems. CentOS version compatibility MinIO has been verified on multiple CentOS versions, including but not limited to: CentOS7.9: Provides a complete installation guide covering cluster configuration, environment preparation, configuration file settings, disk partitioning, and MinI

How to operate distributed training of PyTorch on CentOS How to operate distributed training of PyTorch on CentOS Apr 14, 2025 pm 06:36 PM

PyTorch distributed training on CentOS system requires the following steps: PyTorch installation: The premise is that Python and pip are installed in CentOS system. Depending on your CUDA version, get the appropriate installation command from the PyTorch official website. For CPU-only training, you can use the following command: pipinstalltorchtorchvisiontorchaudio If you need GPU support, make sure that the corresponding version of CUDA and cuDNN are installed and use the corresponding PyTorch version for installation. Distributed environment configuration: Distributed training usually requires multiple machines or single-machine multiple GPUs. Place

How to choose the PyTorch version on CentOS How to choose the PyTorch version on CentOS Apr 14, 2025 pm 06:51 PM

When installing PyTorch on CentOS system, you need to carefully select the appropriate version and consider the following key factors: 1. System environment compatibility: Operating system: It is recommended to use CentOS7 or higher. CUDA and cuDNN:PyTorch version and CUDA version are closely related. For example, PyTorch1.9.0 requires CUDA11.1, while PyTorch2.0.1 requires CUDA11.3. The cuDNN version must also match the CUDA version. Before selecting the PyTorch version, be sure to confirm that compatible CUDA and cuDNN versions have been installed. Python version: PyTorch official branch

Python: Automation, Scripting, and Task Management Python: Automation, Scripting, and Task Management Apr 16, 2025 am 12:14 AM

Python excels in automation, scripting, and task management. 1) Automation: File backup is realized through standard libraries such as os and shutil. 2) Script writing: Use the psutil library to monitor system resources. 3) Task management: Use the schedule library to schedule tasks. Python's ease of use and rich library support makes it the preferred tool in these areas.

See all articles