


Learn Python to implement Qiniu Cloud interface docking and image conversion function
Learn Python to implement Qiniu Cloud interface docking and realize image conversion function
Introduction:
With the development of the Internet, pictures play a very important role in our daily lives. In website development, image conversion is a common requirement, such as image scaling, cropping, or format conversion. Qiniu Cloud is a well-known cloud storage service provider in China, which provides powerful and stable image processing functions. This article will introduce how to use Python language to connect to the interface of Qiniu Cloud to realize the image conversion function.
1. Preparation:
- Register a Qiniu Cloud account and create a storage space.
- Install Python's requests library for sending HTTP requests.
- Get the AccessKey and SecretKey of Qiniu Cloud Storage Space.
2. Import dependent libraries:
To use the requests library to send HTTP requests in a Python project, we need to import the requests library first in the code.
import requests
3. Obtain Qiniu Cloud's upload certificate:
Before uploading images, we need to obtain an upload certificate first. Qiniu Cloud's upload certificate is a token used to upload files and is used to verify the legality of the upload behavior. The following code demonstrates how to obtain upload credentials through Qiniu Cloud's API.
access_key = 'your_access_key' # 七牛云的AccessKey secret_key = 'your_secret_key' # 七牛云的SecretKey bucket_name = 'your_bucket_name' # 存储空间名称 def get_upload_token(access_key, secret_key, bucket_name): url = 'http://api.qiniu.com/put-policy/{}/put-policy'.format(bucket_name) auth = requests.auth.HTTPBasicAuth(access_key, secret_key) response = requests.get(url, auth=auth) result = response.json() if 'token' in result: return result['token'] else: raise ValueError('Failed to get upload token.') upload_token = get_upload_token(access_key, secret_key, bucket_name)
4. Upload image files:
After obtaining the upload credentials, we can start uploading image files. In Qiniu Cloud, we can use a custom key to identify uploaded file resources. The following code demonstrates how to use Python language to upload image files to Qiniu Cloud.
def upload_image(file_path, upload_token): url = 'http://upload.qiniu.com/' headers = { 'Content-Type': 'multipart/form-data', } files = {'file': open(file_path, 'rb')} data = {'token': upload_token} response = requests.post(url, headers=headers, files=files, data=data) result = response.json() if 'key' in result: return result['key'] else: raise ValueError('Failed to upload image.') image_path = 'your_image_path' # 待上传的图片文件路径 image_key = upload_image(image_path, upload_token)
5. Perform image conversion operations:
After uploading the image file successfully, we can perform various conversion operations on the image through Qiniu Cloud's API. Qiniu Cloud provides many powerful image processing functions, such as image scaling, cropping, format conversion, etc. The following code demonstrates how to use Python language to call Qiniu Cloud's interface to achieve image scaling and format conversion.
def image_tranformation(image_key, new_image_key, width, height, format): url = 'http://api.qiniu.com/image/v2/{}'.format(image_key) headers = { 'Content-Type': 'application/x-www-form-urlencoded', } params = { 'imageView2': '/{}.w_{}/h_{}/format/{}'.format(new_image_key, width, height, format), } response = requests.get(url, headers=headers, params=params) with open(new_image_key, 'wb') as f: f.write(response.content) new_image_key = 'your_new_image_key' # 新生成的图片文件key width = 500 # 新图片的宽度 height = 500 # 新图片的高度 format = 'jpg' # 新图片的格式 image_tranformation(image_key, new_image_key, width, height, format)
6. Summary:
This article introduces how to use Python language to connect to the Qiniu Cloud interface to realize the image conversion function. By studying this article, you can master how to use Python language and Qiniu Cloud's API to upload and convert images. I hope this article can be helpful to you when using Qiniu Cloud for image processing.
The above is the detailed content of Learn Python to implement Qiniu Cloud interface docking and image conversion function. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics



MySQL has a free community version and a paid enterprise version. The community version can be used and modified for free, but the support is limited and is suitable for applications with low stability requirements and strong technical capabilities. The Enterprise Edition provides comprehensive commercial support for applications that require a stable, reliable, high-performance database and willing to pay for support. Factors considered when choosing a version include application criticality, budgeting, and technical skills. There is no perfect option, only the most suitable option, and you need to choose carefully according to the specific situation.

The article introduces the operation of MySQL database. First, you need to install a MySQL client, such as MySQLWorkbench or command line client. 1. Use the mysql-uroot-p command to connect to the server and log in with the root account password; 2. Use CREATEDATABASE to create a database, and USE select a database; 3. Use CREATETABLE to create a table, define fields and data types; 4. Use INSERTINTO to insert data, query data, update data by UPDATE, and delete data by DELETE. Only by mastering these steps, learning to deal with common problems and optimizing database performance can you use MySQL efficiently.

MySQL database performance optimization guide In resource-intensive applications, MySQL database plays a crucial role and is responsible for managing massive transactions. However, as the scale of application expands, database performance bottlenecks often become a constraint. This article will explore a series of effective MySQL performance optimization strategies to ensure that your application remains efficient and responsive under high loads. We will combine actual cases to explain in-depth key technologies such as indexing, query optimization, database design and caching. 1. Database architecture design and optimized database architecture is the cornerstone of MySQL performance optimization. Here are some core principles: Selecting the right data type and selecting the smallest data type that meets the needs can not only save storage space, but also improve data processing speed.

HadiDB: A lightweight, high-level scalable Python database HadiDB (hadidb) is a lightweight database written in Python, with a high level of scalability. Install HadiDB using pip installation: pipinstallhadidb User Management Create user: createuser() method to create a new user. The authentication() method authenticates the user's identity. fromhadidb.operationimportuseruser_obj=user("admin","admin")user_obj.

It is impossible to view MongoDB password directly through Navicat because it is stored as hash values. How to retrieve lost passwords: 1. Reset passwords; 2. Check configuration files (may contain hash values); 3. Check codes (may hardcode passwords).

MySQL can run without network connections for basic data storage and management. However, network connection is required for interaction with other systems, remote access, or using advanced features such as replication and clustering. Additionally, security measures (such as firewalls), performance optimization (choose the right network connection), and data backup are critical to connecting to the Internet.

MySQL Workbench can connect to MariaDB, provided that the configuration is correct. First select "MariaDB" as the connector type. In the connection configuration, set HOST, PORT, USER, PASSWORD, and DATABASE correctly. When testing the connection, check that the MariaDB service is started, whether the username and password are correct, whether the port number is correct, whether the firewall allows connections, and whether the database exists. In advanced usage, use connection pooling technology to optimize performance. Common errors include insufficient permissions, network connection problems, etc. When debugging errors, carefully analyze error information and use debugging tools. Optimizing network configuration can improve performance

For production environments, a server is usually required to run MySQL, for reasons including performance, reliability, security, and scalability. Servers usually have more powerful hardware, redundant configurations and stricter security measures. For small, low-load applications, MySQL can be run on local machines, but resource consumption, security risks and maintenance costs need to be carefully considered. For greater reliability and security, MySQL should be deployed on cloud or other servers. Choosing the appropriate server configuration requires evaluation based on application load and data volume.
