MySQL vs MongoDB: Caching and Data Persistence
MySQL vs MongoDB: Comparison in caching and data persistence
Introduction:
In the development process, the database is a very important component. Traditional relational databases such as MySQL and non-relational databases that have emerged in recent years such as MongoDB have different characteristics and advantages in caching and data persistence. This article will introduce the comparison between the two in terms of caching and data persistence, and demonstrate the differences between the two through code examples.
1. Caching
Cache is an important technical means to improve reading performance. MySQL and MongoDB have different mechanisms for caching.
MySQL’s caching mechanism is mainly implemented through query cache (Query Cache). When a query is executed, MySQL will first check whether the result of the query already exists in the query cache. If it exists, it will directly return the cached result, avoiding frequent IO operations. However, MySQL's query cache only works for identical queries and does not work for dynamic queries with parameters. In addition, the query cache also has some restrictions on update operations. Once a record in a table is updated, all related query caches in the table will be cleared.
The caching mechanism of MongoDB stores data in memory and uses the LRU (least recently used) algorithm to determine which data is retained in memory. MongoDB's caching mechanism applies not only to query operations, but also to update and insert operations. Compared with MySQL, MongoDB's caching mechanism is more flexible and efficient.
The following code examples are used to demonstrate the differences in caching between MySQL and MongoDB.
MySQL cache sample code:
import pymysql # 连接数据库 conn = pymysql.connect(host='localhost', user='root', password='password', database='test') cursor = conn.cursor() # 查询语句 sql = "SELECT * FROM users WHERE username='Alice'" # 开启查询缓存 cursor.execute("SET SESSION query_cache_type=1") # 执行查询 cursor.execute(sql) # 第一次查询 res1 = cursor.fetchone() print(res1) # 第二次查询,结果仍然从缓存中获取 cursor.execute(sql) res2 = cursor.fetchone() print(res2) # 更新数据 cursor.execute("UPDATE users SET age=30 WHERE username='Alice'") # 被更新后,缓存将被清空 # 第三次查询,结果来自于数据库 cursor.execute(sql) res3 = cursor.fetchone() print(res3) # 关闭连接 cursor.close() conn.close()
MongoDB cache sample code:
from pymongo import MongoClient # 连接数据库 client = MongoClient() db = client.test # 查询语句 query = {"username": "Alice"} # 执行查询 res1 = db.users.find_one(query) print(res1) # 执行查询,结果仍然来自于内存缓存 res2 = db.users.find_one(query) print(res2) # 更新数据 db.users.update_one(query, {"$set": {"age": 30}}) # 第三次查询,结果仍然来自于内存缓存 res3 = db.users.find_one(query) print(res3) # 关闭连接 client.close()
2. Data persistence
Data persistence refers to permanently storing data to disk to ensure data durability. MySQL and MongoDB also differ in data persistence.
MySQL uses a traditional relational database, and data is stored on the hard disk in the form of tables. MySQL implements transaction persistence through log files and writes transaction operation logs to disk to ensure that data will not be lost in the event of system failure or power outage. In addition, MySQL also supports data backup and recovery to further ensure data reliability.
MongoDB stores data in the form of documents, and each document is a collection of key-value pairs. MongoDB improves read performance by storing data in memory and uses a persistent storage engine to ensure data persistence. MongoDB's persistent storage engine uses copy-on-write (WiredTiger) and log files (oplog) to achieve data persistence. MongoDB also supports replica sets and sharding technologies to further improve data reliability and scalability.
Conclusion:
MySQL and MongoDB have different characteristics and advantages in caching and data persistence. MySQL's query caching mechanism works for the exact same query, while MongoDB's caching mechanism is more flexible and efficient. Regarding data persistence, MySQL ensures data reliability through log files and backup and recovery, while MongoDB achieves data persistence and reliability through a persistent storage engine and replica set sharding technology. Developers should consider comprehensive considerations based on specific needs when selecting a database.
The above is the detailed content of MySQL vs MongoDB: Caching and Data Persistence. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics



MySQL's position in databases and programming is very important. It is an open source relational database management system that is widely used in various application scenarios. 1) MySQL provides efficient data storage, organization and retrieval functions, supporting Web, mobile and enterprise-level systems. 2) It uses a client-server architecture, supports multiple storage engines and index optimization. 3) Basic usages include creating tables and inserting data, and advanced usages involve multi-table JOINs and complex queries. 4) Frequently asked questions such as SQL syntax errors and performance issues can be debugged through the EXPLAIN command and slow query log. 5) Performance optimization methods include rational use of indexes, optimized query and use of caches. Best practices include using transactions and PreparedStatemen

Apache connects to a database requires the following steps: Install the database driver. Configure the web.xml file to create a connection pool. Create a JDBC data source and specify the connection settings. Use the JDBC API to access the database from Java code, including getting connections, creating statements, binding parameters, executing queries or updates, and processing results.

Encrypting MongoDB database on a Debian system requires following the following steps: Step 1: Install MongoDB First, make sure your Debian system has MongoDB installed. If not, please refer to the official MongoDB document for installation: https://docs.mongodb.com/manual/tutorial/install-mongodb-on-debian/Step 2: Generate the encryption key file Create a file containing the encryption key and set the correct permissions: ddif=/dev/urandomof=/etc/mongodb-keyfilebs=512

Detailed explanation of MongoDB efficient backup strategy under CentOS system This article will introduce in detail the various strategies for implementing MongoDB backup on CentOS system to ensure data security and business continuity. We will cover manual backups, timed backups, automated script backups, and backup methods in Docker container environments, and provide best practices for backup file management. Manual backup: Use the mongodump command to perform manual full backup, for example: mongodump-hlocalhost:27017-u username-p password-d database name-o/backup directory This command will export the data and metadata of the specified database to the specified backup directory.

The process of starting MySQL in Docker consists of the following steps: Pull the MySQL image to create and start the container, set the root user password, and map the port verification connection Create the database and the user grants all permissions to the database

Installing MySQL on CentOS involves the following steps: Adding the appropriate MySQL yum source. Execute the yum install mysql-server command to install the MySQL server. Use the mysql_secure_installation command to make security settings, such as setting the root user password. Customize the MySQL configuration file as needed. Tune MySQL parameters and optimize databases for performance.

Sorting index is a type of MongoDB index that allows sorting documents in a collection by specific fields. Creating a sort index allows you to quickly sort query results without additional sorting operations. Advantages include quick sorting, override queries, and on-demand sorting. The syntax is db.collection.createIndex({ field: <sort order> }), where <sort order> is 1 (ascending order) or -1 (descending order). You can also create multi-field sorting indexes that sort multiple fields.

The key to installing MySQL elegantly is to add the official MySQL repository. The specific steps are as follows: Download the MySQL official GPG key to prevent phishing attacks. Add MySQL repository file: rpm -Uvh https://dev.mysql.com/get/mysql80-community-release-el7-3.noarch.rpm Update yum repository cache: yum update installation MySQL: yum install mysql-server startup MySQL service: systemctl start mysqld set up booting
