


Detailed introduction to the high scalability and traffic diversion policy control method of Nginx reverse proxy server
High scalability and traffic diversion policy control method of Nginx reverse proxy server
Introduction:
In the context of today's growing Internet applications, service high availability and load balancing have become important subject. In order to meet these needs, Nginx reverse proxy server came into being. As a high-performance HTTP and reverse proxy server, Nginx is highly regarded for its excellent scalability and flexible traffic diversion policy control method.
1. High scalability of Nginx reverse proxy server
High scalability is a major feature of Nginx, which can easily cope with application scenarios of high traffic and large-scale access. The high scalability of Nginx is mainly reflected in the following aspects:
- Asynchronous event-driven:
Nginx adopts an asynchronous event-driven processing model, that is, each connection is on an independent event Operates through non-blocking I/O and can handle thousands of concurrent connections. This asynchronous event-driven model allows Nginx to still maintain good performance in the face of high concurrency. - Reverse proxy server cluster:
Nginx supports cluster deployment of reverse proxy servers. By horizontally expanding multiple Nginx instances, the availability and pressure resistance of the system can be improved. A reverse proxy server cluster can distribute requests across multiple servers to achieve load balancing.
2. Traffic diversion policy control method
- Polling strategy:
Polling strategy is the most basic and commonly used load balancing strategy, which will Distributed to each server in turn to achieve the effect of balanced request distribution. In the Nginx configuration, you can use theupstream
directive to define a group of servers, and use theserver
directive to set a weight value for each server to control the traffic proportion of each server. For example:
http { upstream backend { server backend1.example.com weight=3; server backend2.example.com weight=2; server backend3.example.com; } server { location / { proxy_pass http://backend; } } }
In the above configuration, Nginx will distribute requests to the three backend servers according to weight values, among which the traffic of backend1.example.com
will be# 1.5 times of ##backend2.example.com.
- IP hash policy:
- The IP hash policy will allocate requests to specified servers based on the client's IP address. This strategy is suitable for situations where state needs to be maintained across user sessions, such as shopping carts or user login information. In the Nginx configuration, you can use the
ip_hashdirective to enable the IP hash policy. For example:
http { upstream backend { ip_hash; server backend1.example.com; server backend2.example.com; server backend3.example.com; } server { location / { proxy_pass http://backend; } } }
- Minimum number of connections policy:
- The minimum number of connections policy will allocate requests to the server with the least number of connections to achieve load balancing. In the Nginx configuration, you can use the
least_conndirective to enable the minimum number of connections policy. For example:
http { upstream backend { least_conn; server backend1.example.com; server backend2.example.com; server backend3.example.com; } server { location / { proxy_pass http://backend; } } }
As a high-performance reverse proxy server, Nginx has excellent scalability and traffic diversion policy control methods. Through the asynchronous event-driven processing model and the deployment of reverse proxy server clusters, application scenarios with high traffic and large-scale access can be easily handled. At the same time, through various load balancing strategies such as polling, IP hashing, and minimum number of connections, balanced distribution of traffic can be achieved and system availability and performance can be improved.
The above is the detailed content of Detailed introduction to the high scalability and traffic diversion policy control method of Nginx reverse proxy server. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics



How to configure an Nginx domain name on a cloud server: Create an A record pointing to the public IP address of the cloud server. Add virtual host blocks in the Nginx configuration file, specifying the listening port, domain name, and website root directory. Restart Nginx to apply the changes. Access the domain name test configuration. Other notes: Install the SSL certificate to enable HTTPS, ensure that the firewall allows port 80 traffic, and wait for DNS resolution to take effect.

How to confirm whether Nginx is started: 1. Use the command line: systemctl status nginx (Linux/Unix), netstat -ano | findstr 80 (Windows); 2. Check whether port 80 is open; 3. Check the Nginx startup message in the system log; 4. Use third-party tools, such as Nagios, Zabbix, and Icinga.

The methods that can query the Nginx version are: use the nginx -v command; view the version directive in the nginx.conf file; open the Nginx error page and view the page title.

Steps to create a Docker image: Write a Dockerfile that contains the build instructions. Build the image in the terminal, using the docker build command. Tag the image and assign names and tags using the docker tag command.

Starting an Nginx server requires different steps according to different operating systems: Linux/Unix system: Install the Nginx package (for example, using apt-get or yum). Use systemctl to start an Nginx service (for example, sudo systemctl start nginx). Windows system: Download and install Windows binary files. Start Nginx using the nginx.exe executable (for example, nginx.exe -c conf\nginx.conf). No matter which operating system you use, you can access the server IP

In Linux, use the following command to check whether Nginx is started: systemctl status nginx judges based on the command output: If "Active: active (running)" is displayed, Nginx is started. If "Active: inactive (dead)" is displayed, Nginx is stopped.

Steps to start Nginx in Linux: Check whether Nginx is installed. Use systemctl start nginx to start the Nginx service. Use systemctl enable nginx to enable automatic startup of Nginx at system startup. Use systemctl status nginx to verify that the startup is successful. Visit http://localhost in a web browser to view the default welcome page.

To get Nginx to run Apache, you need to: 1. Install Nginx and Apache; 2. Configure the Nginx agent; 3. Start Nginx and Apache; 4. Test the configuration to ensure that you can see Apache content after accessing the domain name. In addition, you need to pay attention to other matters such as port number matching, virtual host configuration, and SSL/TLS settings.
