Home > Backend Development > PHP Tutorial > Use PHP and coreseek to implement intelligent image search function

Use PHP and coreseek to implement intelligent image search function

WBOY
Release: 2023-08-08 16:06:01
Original
1231 people have browsed it

Use PHP and coreseek to implement intelligent image search function

Use PHP and coreseek to realize intelligent image search function

Abstract:
This article will introduce how to use PHP and coreseek open source search engine library to realize intelligence Image search function. Through feature extraction and similarity comparison of images, we can quickly find similar images in a large number of images. In addition, we will also use the full-text search function of coreseek to realize the function of searching pictures based on keywords.

Keywords: PHP, coreseek, image search, feature extraction, similarity comparison

  1. Introduction
    With the development of the Internet and the popularity of smartphones, users shoot and share The number of photos has grown exponentially. This poses a challenge for users to find interesting pictures among a large number of pictures. The traditional image search method based on file names or tags can no longer meet the needs of users. Therefore, intelligent image search technology has become particularly important. This article introduces how to use PHP and coreseek to implement intelligent image search function.
  2. Image feature extraction
    Before performing image search, we need to extract features from the image. Commonly used image feature extraction methods include color histogram, SIFT, SURF, etc. In this article, we will use the OpenCV library to extract the color histogram as the feature vector of the image.

The following is a sample code for extracting a color histogram using PHP and the OpenCV library:

<?php
// 载入OpenCV库
$opencv = new OpenCV();

// 读取图片
$image = $opencv->loadImage('example.jpg');

// 提取颜色直方图
$histogram = $opencv->calculateHistogram($image);

// 将直方图转换为特征向量
$featureVector = flatten($histogram);

// 存储特征向量到数据库或文件
saveFeatureVector($featureVector);
?>
Copy after login

The above code first loads the OpenCV library and then reads a picture. Next, the color histogram is calculated and converted into a feature vector by calling the calculateHistogram function. Finally, we can store this feature vector into a database or file for subsequent use.

  1. Image similarity comparison
    When performing image search, we need to extract features from the images uploaded by users and compare the similarities with the image features in the database. Commonly used similarity comparison methods include Euclidean distance, cosine similarity, etc. In this article, we will use cosine similarity to compare the similarity of images.

The following is a sample code for calculating cosine similarity using PHP:

<?php
// 计算余弦相似度
function cosineSimilarity($vector1, $vector2) {
    $dotProduct = dotProduct($vector1, $vector2);
    $magnitude1 = magnitude($vector1);
    $magnitude2 = magnitude($vector2);
    return $dotProduct / ($magnitude1 * $magnitude2);
}

// 计算向量的点积
function dotProduct($vector1, $vector2) {
    $result = 0;
    foreach ($vector1 as $key => $value) {
        $result += $value * $vector2[$key];
    }
    return $result;
}

// 计算向量的模长
function magnitude($vector) {
    $result = 0;
    foreach ($vector as $value) {
        $result += $value * $value;
    }
    return sqrt($result);
}

// 加载用户上传的图片
$userImage = loadImage($_FILES['image']);

// 提取用户上传图片的特征向量
$userFeatureVector = extractFeatureVector($userImage);

// 加载数据库中的图片特征向量
$databaseFeatureVectors = loadFeatureVectors();

// 计算所有图片特征向量与用户上传图片的相似度
$similarImages = array();
foreach ($databaseFeatureVectors as $featureVector) {
    $similarity = cosineSimilarity($featureVector, $userFeatureVector);
    if ($similarity > 0.8) {
        $similarImages[] = $featureVector;
    }
}
?>
Copy after login

The above code first defines the function for calculating cosine similarity. Then, obtain the feature vector of the image uploaded by the user by calling the loadImage and extractFeatureVector functions. Next, load the image feature vectors in the database by calling the loadFeatureVectors function. Finally, by calculating the similarity and filtering out images with a similarity greater than 0.8, we can get images that are similar to the images uploaded by the user.

  1. Keyword Search
    In addition to searching for similar pictures based on their characteristics, we can also use coreseek's full-text search function to search for pictures based on keywords.

The following is a sample code for using PHP and coreseek to implement keyword search:

<?php
// 初始化coreseek
$sphinx = new SphinxClient();
$sphinx->SetServer('localhost', 9312);

// 执行关键词搜索
$result = $sphinx->Query('keyword');

// 处理搜索结果
if ($result['total'] > 0) {
    $ids = array();
    foreach ($result['matches'] as $match) {
        $ids[] = $match['id'];
    }
    
    // 根据搜索结果的ID获取图片信息
    $images = getImagesByIds($ids);
    
    // 显示搜索结果
    foreach ($images as $image) {
        displayImage($image);
    }
} else {
    echo '未找到相关图片';
}
?>
Copy after login

The above code first initializes coreseek and specifies the address and port of the search server. Then, perform a keyword search by calling the Query function. Next, we can obtain the corresponding image information based on the ID of the search result and display it.

  1. Conclusion
    This article introduces how to use PHP and coreseek to implement intelligent image search function. Through feature extraction and similarity comparison of images, we can quickly find similar images in a large number of images. In addition, using coreseek's full-text search function, we can also search for images based on keywords. I hope this article will help you understand and implement intelligent image search.

The above is the detailed content of Use PHP and coreseek to implement intelligent image search function. For more information, please follow other related articles on the PHP Chinese website!

source:php.cn
Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
Popular Tutorials
More>
Latest Downloads
More>
Web Effects
Website Source Code
Website Materials
Front End Template