This issue uses python to analyze Double Eleven beauty sales data, see Look:
The number of beauty orders and total sales in the days before and after Double Eleven
Each beauty brandSales situation
Proportion of primary/secondary classification of beauty brands
Price box distribution of each beauty brand
Average price of each beauty brand
Beauty brand word cloud
Wait...
I hope it will be helpful to everyone. If you have any questions or areas that need improvement, please contact the editor.
Involved libraries:
Pandas — Data processing
Pyecharts — Data visualization
import pandas as pd from pyecharts.charts import Line from pyecharts.charts import Bar from pyecharts.charts import Scatter from pyecharts.charts import Boxplot from pyecharts.charts import Pie from pyecharts.charts import WordCloud from pyecharts import options as opts from pyecharts.commons.utils import JsCode import warnings warnings.filterwarnings('ignore')
df_school = pd.read_excel('data.xlsx')
df.info()
2.3 筛选有销量的数据
df1 = df.copy() df1 = df1[df1['销量']>0]
def get_line1(): line1 = ( Line() .add_xaxis(x_data) .add_yaxis("", y_data, is_smooth=True) .set_global_opts( legend_opts=opts.LegendOpts(is_show=False), visualmap_opts=opts.VisualMapOpts( is_show=False, min_ = 1500, max_ = max(y_data), range_color=range_color ), title_opts=opts.TitleOpts( title='1-双十一前后几天美妆订单数量', subtitle='-- 制图@公众号:Python当打之年 --', pos_top='1%', pos_left="1%", title_textstyle_opts=opts.TextStyleOpts(color='#fff200',font_size=20) ) ) )
def get_bar1(): bar1 = ( Bar() .add_xaxis(x_data) .add_yaxis("", y_data,label_opts=opts.LabelOpts(position='right')) .set_global_opts( legend_opts=opts.LegendOpts(is_show=False), visualmap_opts=opts.VisualMapOpts( is_show=False, min_ = min(y_data), max_ = max(y_data), dimension=0, range_color=range_color ), title_opts=opts.TitleOpts( title='3-各美妆品牌订单数量', subtitle='-- 制图@公众号:Python当打之年 --', pos_top='1%', pos_left="1%", title_textstyle_opts=opts.TextStyleOpts(color='#fff200',font_size=20) ), ) .reversal_axis() )
相宜本草的销售额、销量都是最高的,美宝莲、悦诗风吟、妮维雅、欧莱雅分列第二至五位。
3.5 一级分类占比
def get_pie1(): pie1 = ( Pie() .add( "", [list(z) for z in zip(x_data, y_data)], radius=["40%", "70%"], center=["50%", "50%"], label_opts=opts.LabelOpts(formatter="{b}: {d}%",font_size=14,font_weight=500), ) .set_global_opts( title_opts=opts.TitleOpts( title='5-一级分类占比', subtitle='-- 制图@公众号:Python当打之年 --', pos_top='1%', pos_left="1%", title_textstyle_opts=opts.TextStyleOpts(color='#fff200',font_size=20) ), legend_opts=opts.LegendOpts(is_show=False) ) )
按二级分类来看,订单量前五的分别是:套装类、清洁类、面霜类、化妆水和乳液类。
3.7 二级分类销量
3.8 Price Box Chart of Each Beauty Brand
##3.9 Average Price of Each Beauty Brand
In terms of average price, brands such as Guerlain, Sulwhasoo, Estee Lauder, Lancôme, and Shiseido are slightly more expensive.
3.10 Beauty brand classification word cloud
The above is the detailed content of Pandas+Pyecharts | Visualization of Double Eleven beauty sales data analysis. For more information, please follow other related articles on the PHP Chinese website!