Microservice data encryption and decryption tool written in Java
Microservice data encryption and decryption tool written in Java
With the development of the Internet, microservice architecture has become a popular application architecture model. In a microservices architecture, communication and data security are very important considerations. In order to protect the confidentiality of sensitive data, we need to perform encryption and decryption operations on the data. In this article, I will introduce a microservice data encryption and decryption tool written in Java.
This tool uses the AES (Advanced Encryption Standard) algorithm for data encryption and decryption. The AES algorithm is a symmetric encryption algorithm that is widely used for data protection and secure transmission. Below is sample code to demonstrate the process of data encryption and decryption using this tool.
The code for the encryption part is as follows:
import javax.crypto.Cipher; import javax.crypto.spec.SecretKeySpec; import java.nio.charset.StandardCharsets; import java.util.Base64; public class DataEncryptor { private static final String KEY = "1234567890abcdef"; // 密钥,可以自定义 public static String encrypt(String data) throws Exception { Cipher cipher = Cipher.getInstance("AES/ECB/PKCS5Padding"); SecretKeySpec secretKeySpec = new SecretKeySpec(KEY.getBytes(StandardCharsets.UTF_8), "AES"); cipher.init(Cipher.ENCRYPT_MODE, secretKeySpec); byte[] encryptedData = cipher.doFinal(data.getBytes(StandardCharsets.UTF_8)); return Base64.getEncoder().encodeToString(encryptedData); } }
The code for the decryption part is as follows:
import javax.crypto.Cipher; import javax.crypto.spec.SecretKeySpec; import java.nio.charset.StandardCharsets; import java.util.Base64; public class DataDecryptor { private static final String KEY = "1234567890abcdef"; // 密钥,与加密部分保持一致 public static String decrypt(String encryptedData) throws Exception { Cipher cipher = Cipher.getInstance("AES/ECB/PKCS5Padding"); SecretKeySpec secretKeySpec = new SecretKeySpec(KEY.getBytes(StandardCharsets.UTF_8), "AES"); cipher.init(Cipher.DECRYPT_MODE, secretKeySpec); byte[] decryptedData = cipher.doFinal(Base64.getDecoder().decode(encryptedData)); return new String(decryptedData, StandardCharsets.UTF_8); } }
In practical applications, we can encapsulate the above code into a tool class And implement data encryption and decryption by calling methods.
The sample code for using this tool to encrypt and decrypt data is as follows:
public class Main { public static void main(String[] args) { try { String originalData = "Hello, World!"; // 待加密的数据 String encryptedData = DataEncryptor.encrypt(originalData); System.out.println("加密后的数据:" + encryptedData); String decryptedData = DataDecryptor.decrypt(encryptedData); System.out.println("解密后的数据:" + decryptedData); } catch (Exception e) { e.printStackTrace(); } } }
In the above sample code, we first define a data to be encryptedHello, World!
, then call the DataEncryptor.encrypt()
method to encrypt, and then print the encrypted data. Then call the DataDecryptor.decrypt()
method to decrypt, and then print the decrypted data.
Using this tool for data encryption and decryption can effectively protect the security and confidentiality of sensitive data and plays an important role in the microservice architecture. Of course, in practical applications, we also need to choose appropriate encryption algorithms and key management methods based on specific needs and environments.
In summary, this article introduces a microservice data encryption and decryption tool written in Java and gives corresponding code examples. With this tool, we can easily encrypt and decrypt sensitive data to ensure data security and confidentiality. I hope this article will help you with data protection in microservice development.
The above is the detailed content of Microservice data encryption and decryption tool written in Java. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics



Guide to Perfect Number in Java. Here we discuss the Definition, How to check Perfect number in Java?, examples with code implementation.

Guide to Random Number Generator in Java. Here we discuss Functions in Java with examples and two different Generators with ther examples.

Guide to Weka in Java. Here we discuss the Introduction, how to use weka java, the type of platform, and advantages with examples.

Guide to Smith Number in Java. Here we discuss the Definition, How to check smith number in Java? example with code implementation.

In this article, we have kept the most asked Java Spring Interview Questions with their detailed answers. So that you can crack the interview.

Java 8 introduces the Stream API, providing a powerful and expressive way to process data collections. However, a common question when using Stream is: How to break or return from a forEach operation? Traditional loops allow for early interruption or return, but Stream's forEach method does not directly support this method. This article will explain the reasons and explore alternative methods for implementing premature termination in Stream processing systems. Further reading: Java Stream API improvements Understand Stream forEach The forEach method is a terminal operation that performs one operation on each element in the Stream. Its design intention is

Guide to TimeStamp to Date in Java. Here we also discuss the introduction and how to convert timestamp to date in java along with examples.

Capsules are three-dimensional geometric figures, composed of a cylinder and a hemisphere at both ends. The volume of the capsule can be calculated by adding the volume of the cylinder and the volume of the hemisphere at both ends. This tutorial will discuss how to calculate the volume of a given capsule in Java using different methods. Capsule volume formula The formula for capsule volume is as follows: Capsule volume = Cylindrical volume Volume Two hemisphere volume in, r: The radius of the hemisphere. h: The height of the cylinder (excluding the hemisphere). Example 1 enter Radius = 5 units Height = 10 units Output Volume = 1570.8 cubic units explain Calculate volume using formula: Volume = π × r2 × h (4
