Home > Backend Development > Python Tutorial > Tips | Python implements several common encryption algorithms

Tips | Python implements several common encryption algorithms

Release: 2023-08-10 16:01:22
forward
2198 people have browsed it


We often encounter some encryption algorithms in life. Today we will talk about these encryption algorithms. Python implementation. Some commonly used encryption methods basically have corresponding Python libraries, and we basically no longer need to use code to implement specific algorithms.

Tips | Python implements several common encryption algorithms

MD5 encryption

Full name: MD5 Message Digest Algorithm (English: MD5 Message-Digest Algorithm), a widely used cryptographic hash function that can produce a 128-bit (16-byte) hash value to ensure the integrity of information transmission consistent. The md5 encryption algorithm is irreversible, so decryption is generally achieved through a brute force method and through the website interface.
##Python code:
import hashlib
m = hashlib.md5()
m.update(str.encode("utf8"))
print(m.hexdigest())
Copy after login

SHA1 Encryption

## Full name:
Secure Hash Algorithm is mainly applicable to the digital signature algorithm (Digital Signature Standard DSS) defined in the Digital Signature Standard (DSS). Signature Algorithm DSA), SHA1 is more secure than MD5. For messages less than 2^64 bits in length, SHA1 produces a 160-bit message digest.
Python code:
import hashlib
sha1 = hashlib.sha1()
data = '2333333'
sha1.update(data.encode('utf-8'))
sha1_data = sha1.hexdigest()
print(sha1_data)
Copy after login

HMAC encryption

全称:散列消息鉴别码(Hash Message Authentication Code), HMAC加密算法是一种安全的基于加密hash函数和共享密钥的消息认证协议。实现原理是用公开函数和密钥产生一个固定长度的值作为认证标识,用这个标识鉴别消息的完整性。使用一个密钥生成一个固定大小的小数据块,即 MAC,并将其加入到消息中,然后传输。接收方利用与发送方共享的密钥进行鉴别认证等。
Python代码:
import hmac
import hashlib
# 第一个参数是密钥key,第二个参数是待加密的字符串,第三个参数是hash函数
mac = hmac.new('key','hello',hashlib.md5)
mac.digest()  # 字符串的ascii格式
mac.hexdigest()  # 加密后字符串的十六进制格式
Copy after login


DES加密

全称:数据加密标准(Data Encryption Standard),属于对称加密算法。DES是一个分组加密算法,典型的DES以64位为分组对数据加密,加密和解密用的是同一个算法。它的密钥长度是56位(因为每个第8 位都用作奇偶校验),密钥可以是任意的56位的数,而且可以任意时候改变。
Python代码:
import binascii
from pyDes import des, CBC, PAD_PKCS5
# 需要安装 pip install pyDes

def des_encrypt(secret_key, s):
    iv = secret_key
    k = des(secret_key, CBC, iv, pad=None, padmode=PAD_PKCS5)
    en = k.encrypt(s, padmode=PAD_PKCS5)
    return binascii.b2a_hex(en)

def des_decrypt(secret_key, s):
    iv = secret_key
    k = des(secret_key, CBC, iv, pad=None, padmode=PAD_PKCS5)
    de = k.decrypt(binascii.a2b_hex(s), padmode=PAD_PKCS5)
    return de

secret_str = des_encrypt('12345678', 'I love YOU~')
print(secret_str)
clear_str = des_decrypt('12345678', secret_str)
print(clear_str)
Copy after login

AES加密

全称:高级加密标准(英语:Advanced Encryption Standard),在密码学中又称Rijndael加密法,是美国联邦政府采用的一种区块加密标准。这个标准用来替代原先的DES,已经被多方分析且广为全世界所使用。
Python代码:
import base64
from Crypto.Cipher import AES

'''
AES对称加密算法
'''
# 需要补位,str不是16的倍数那就补足为16的倍数
def add_to_16(value):
    while len(value) % 16 != 0:
        value += '\0'
    return str.encode(value)  # 返回bytes
# 加密方法
def encrypt(key, text):
    aes = AES.new(add_to_16(key), AES.MODE_ECB)  # 初始化加密器
    encrypt_aes = aes.encrypt(add_to_16(text))  # 先进行aes加密
    encrypted_text = str(base64.encodebytes(encrypt_aes), encoding='utf-8')  # 执行加密并转码返回bytes
    return encrypted_text
# 解密方法
def decrypt(key, text):
    aes = AES.new(add_to_16(key), AES.MODE_ECB)  # 初始化加密器
    base64_decrypted = base64.decodebytes(text.encode(encoding='utf-8'))  # 优先逆向解密base64成bytes
    decrypted_text = str(aes.decrypt(base64_decrypted), encoding='utf-8').replace('\0', '')  # 执行解密密并转码返回str
    return decrypted_text
Copy after login

RSA加密

全称:Rivest-Shamir-Adleman,RSA加密算法是一种非对称加密算法。在公开密钥加密和电子商业中RSA被广泛使用。它被普遍认为是目前最优秀的公钥方案之一。RSA是第一个能同时用于加密和数字签名的算法,它能够抵抗到目前为止已知的所有密码攻击。
Python代码:
# -*- coding: UTF-8 -*-
# reference codes: https://www.jianshu.com/p/7a4645691c68

import base64
import rsa
from rsa import common

# 使用 rsa库进行RSA签名和加解密
class RsaUtil(object):
    PUBLIC_KEY_PATH = 'xxxxpublic_key.pem'  # 公钥
    PRIVATE_KEY_PATH = 'xxxxxprivate_key.pem'  # 私钥

    # 初始化key
    def __init__(self,
                 company_pub_file=PUBLIC_KEY_PATH,
                 company_pri_file=PRIVATE_KEY_PATH):

        if company_pub_file:
            self.company_public_key = rsa.PublicKey.load_pkcs1_openssl_pem(open(company_pub_file).read())
        if company_pri_file:
            self.company_private_key = rsa.PrivateKey.load_pkcs1(open(company_pri_file).read())

    def get_max_length(self, rsa_key, encrypt=True):
        """加密内容过长时 需要分段加密 换算每一段的长度.
            :param rsa_key: 钥匙.
            :param encrypt: 是否是加密.
        """
        blocksize = common.byte_size(rsa_key.n)
        reserve_size = 11  # 预留位为11
        if not encrypt:  # 解密时不需要考虑预留位
            reserve_size = 0
        maxlength = blocksize - reserve_size
        return maxlength

    # 加密 支付方公钥
    def encrypt_by_public_key(self, message):
        """使用公钥加密.
            :param message: 需要加密的内容.
            加密之后需要对接过进行base64转码
        """
        encrypt_result = b''
        max_length = self.get_max_length(self.company_public_key)
        while message:
            input = message[:max_length]
            message = message[max_length:]
            out = rsa.encrypt(input, self.company_public_key)
            encrypt_result += out
        encrypt_result = base64.b64encode(encrypt_result)
        return encrypt_result

    def decrypt_by_private_key(self, message):
        """使用私钥解密.
            :param message: 需要加密的内容.
            解密之后的内容直接是字符串,不需要在进行转义
        """
        decrypt_result = b""

        max_length = self.get_max_length(self.company_private_key, False)
        decrypt_message = base64.b64decode(message)
        while decrypt_message:
            input = decrypt_message[:max_length]
            decrypt_message = decrypt_message[max_length:]
            out = rsa.decrypt(input, self.company_private_key)
            decrypt_result += out
        return decrypt_result

    # 签名 商户私钥 base64转码
    def sign_by_private_key(self, data):
        """私钥签名.
            :param data: 需要签名的内容.
            使用SHA-1 方法进行签名(也可以使用MD5)
            签名之后,需要转义后输出
        """
        signature = rsa.sign(str(data), priv_key=self.company_private_key, hash='SHA-1')
        return base64.b64encode(signature)

    def verify_by_public_key(self, message, signature):
        """公钥验签.
            :param message: 验签的内容.
            :param signature: 对验签内容签名的值(签名之后,会进行b64encode转码,所以验签前也需转码).
        """
        signature = base64.b64decode(signature)
        return rsa.verify(message, signature, self.company_public_key)
Copy after login


ECC加密

全称:椭圆曲线加密(Elliptic Curve Cryptography),ECC加密算法是一种公钥加密技术,以椭圆曲线理论为基础。利用有限域上椭圆曲线的点构成的Abel群离散对数难解性,实现加密、解密和数字签名。将椭圆曲线中的加法运算与离散对数中的模乘运算相对应,就可以建立基于椭圆曲线的对应密码体制。
Python代码:
# -*- coding:utf-8 *-
# author: DYBOY
# reference codes: https://blog.dyboy.cn/websecurity/121.html
# description: ECC椭圆曲线加密算法实现
"""
    考虑K=kG ,其中K、G为椭圆曲线Ep(a,b)上的点,n为G的阶(nG=O∞ ),k为小于n的整数。
    则给定k和G,根据加法法则,计算K很容易但反过来,给定K和G,求k就非常困难。
    因为实际使用中的ECC原则上把p取得相当大,n也相当大,要把n个解点逐一算出来列成上表是不可能的。
    这就是椭圆曲线加密算法的数学依据
    点G称为基点(base point)
    k(k<n)为私有密钥(privte key)
    K为公开密钥(public key)
"""

def get_inverse(mu, p):
    """
    获取y的负元
    """
    for i in range(1, p):
        if (i*mu)%p == 1:
            return i
    return -1

def get_gcd(zi, mu):
    """
    获取最大公约数
    """
    if mu:
        return get_gcd(mu, zi%mu)
    else:
        return zi

def get_np(x1, y1, x2, y2, a, p):
    """
    获取n*p,每次+p,直到求解阶数np=-p
    """
    flag = 1  # 定义符号位(+/-)

    # 如果 p=q  k=(3x2+a)/2y1mod p
    if x1 == x2 and y1 == y2:
        zi = 3 * (x1 ** 2) + a  # 计算分子      【求导】
        mu = 2 * y1    # 计算分母

    # 若P≠Q,则k=(y2-y1)/(x2-x1) mod p
    else:
        zi = y2 - y1
        mu = x2 - x1
        if zi* mu < 0:
            flag = 0        # 符号0为-(负数)
            zi = abs(zi)
            mu = abs(mu)

    # 将分子和分母化为最简
    gcd_value = get_gcd(zi, mu)     # 最大公約數
    zi = zi // gcd_value            # 整除
    mu = mu // gcd_value
    # 求分母的逆元  逆元: ∀a ∈G ,ョb∈G 使得 ab = ba = e
    # P(x,y)的负元是 (x,-y mod p)= (x,p-y) ,有P+(-P)= O∞
    inverse_value = get_inverse(mu, p)
    k = (zi * inverse_value)

    if flag == 0:                   # 斜率负数 flag==0
        k = -k
    k = k % p
    # 计算x3,y3 P+Q
    """
        x3≡k2-x1-x2(mod p)
        y3≡k(x1-x3)-y1(mod p)
    """
    x3 = (k ** 2 - x1 - x2) % p
    y3 = (k * (x1 - x3) - y1) % p
    return x3,y3

def get_rank(x0, y0, a, b, p):
    """
    获取椭圆曲线的阶
    """
    x1 = x0             #-p的x坐标
    y1 = (-1*y0)%p      #-p的y坐标
    tempX = x0
    tempY = y0
    n = 1
    while True:
        n += 1
        # 求p+q的和,得到n*p,直到求出阶
        p_x,p_y = get_np(tempX, tempY, x0, y0, a, p)
        # 如果 == -p,那么阶数+1,返回
        if p_x == x1 and p_y == y1:
            return n+1
        tempX = p_x
        tempY = p_y

def get_param(x0, a, b, p):
    """
    计算p与-p
    """
    y0 = -1
    for i in range(p):
        # 满足取模约束条件,椭圆曲线Ep(a,b),p为质数,x,y∈[0,p-1]
        if i**2%p == (x0**3 + a*x0 + b)%p:
            y0 = i
            break

    # 如果y0没有,返回false
    if y0 == -1:
        return False

    # 计算-y(负数取模)
    x1 = x0
    y1 = (-1*y0) % p
    return x0,y0,x1,y1

def get_graph(a, b, p):
    """
    输出椭圆曲线散点图
    """
    x_y = []
    # 初始化二维数组
    for i in range(p):
        x_y.append([&#39;-&#39; for i in range(p)])

    for i in range(p):
        val =get_param(i, a, b, p)  # 椭圆曲线上的点
        if(val != False):
            x0,y0,x1,y1 = val
            x_y[x0][y0] = 1
            x_y[x1][y1] = 1

    print("椭圆曲线的散列图为:")
    for i in range(p):              # i= 0-> p-1
        temp = p-1-i        # 倒序

        # 格式化输出1/2位数,y坐标轴
        if temp >= 10:
            print(temp, end=" ")
        else:
            print(temp, end="  ")

        # 输出具体坐标的值,一行
        for j in range(p):
            print(x_y[j][temp], end="  ")
        print("")   #换行

    # 输出 x 坐标轴
    print("  ", end="")
    for i in range(p):
        if i >=10:
            print(i, end=" ")
        else:
            print(i, end="  ")
    print(&#39;\n&#39;)

def get_ng(G_x, G_y, key, a, p):
    """
    计算nG
    """
    temp_x = G_x
    temp_y = G_y
    while key != 1:
        temp_x,temp_y = get_np(temp_x,temp_y, G_x, G_y, a, p)
        key -= 1
    return temp_x,temp_y

def ecc_main():
    while True:
        a = int(input("请输入椭圆曲线参数a(a>0)的值:"))
        b = int(input("请输入椭圆曲线参数b(b>0)的值:"))
        p = int(input("请输入椭圆曲线参数p(p为素数)的值:"))   #用作模运算

        # 条件满足判断
        if (4*(a**3)+27*(b**2))%p == 0:
            print("您输入的参数有误,请重新输入!!!\n")
        else:
            break

    # 输出椭圆曲线散点图
    get_graph(a, b, p)

    # 选点作为G点
    print("user1:在如上坐标系中选一个值为G的坐标")
    G_x = int(input("user1:请输入选取的x坐标值:"))
    G_y = int(input("user1:请输入选取的y坐标值:"))

    # 获取椭圆曲线的阶
    n = get_rank(G_x, G_y, a, b, p)

    # user1生成私钥,小key
    key = int(input("user1:请输入私钥小key(<{}):".format(n)))

    # user1生成公钥,大KEY
    KEY_x,kEY_y = get_ng(G_x, G_y, key, a, p)

    # user2阶段
    # user2拿到user1的公钥KEY,Ep(a,b)阶n,加密需要加密的明文数据
    # 加密准备
    k = int(input("user2:请输入一个整数k(<{})用于求kG和kQ:".format(n)))
    k_G_x,k_G_y = get_ng(G_x, G_y, k, a, p)                         # kG
    k_Q_x,k_Q_y = get_ng(KEY_x, kEY_y, k, a, p)                     # kQ

    # 加密
    plain_text = input("user2:请输入需要加密的字符串:")
    plain_text = plain_text.strip()
    #plain_text = int(input("user1:请输入需要加密的密文:"))
    c = []
    print("密文为:",end="")
    for char in plain_text:
        intchar = ord(char)
        cipher_text = intchar*k_Q_x
        c.append([k_G_x, k_G_y, cipher_text])
        print("({},{}),{}".format(k_G_x, k_G_y, cipher_text),end="-")


    # user1阶段
    # 拿到user2加密的数据进行解密
    # 知道 k_G_x,k_G_y,key情况下,求解k_Q_x,k_Q_y是容易的,然后plain_text = cipher_text/k_Q_x
    print("\nuser1解密得到明文:",end="")
    for charArr in c:
        decrypto_text_x,decrypto_text_y = get_ng(charArr[0], charArr[1], key, a, p)
        print(chr(charArr[2]//decrypto_text_x),end="")

if __name__ == "__main__":
    print("*************ECC椭圆曲线加密*************")
    ecc_main()
Copy after login

The above is the detailed content of Tips | Python implements several common encryption algorithms. For more information, please follow other related articles on the PHP Chinese website!

Related labels:
source:Python当打之年
Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
Popular Tutorials
More>
Latest Downloads
More>
Web Effects
Website Source Code
Website Materials
Front End Template