Home > Backend Development > Golang > Comprehensive analysis of Baidu AI interface: A tool guide for Golang developers

Comprehensive analysis of Baidu AI interface: A tool guide for Golang developers

PHPz
Release: 2023-08-13 11:25:53
Original
963 people have browsed it

Comprehensive analysis of Baidu AI interface: A tool guide for Golang developers

Comprehensive analysis of Baidu AI interface: A tool guide for Golang developers

With the continuous development of artificial intelligence technology, Baidu AI interface has become a must-have for more and more developers. Sharp weapon. As a powerful artificial intelligence service platform, Baidu AI interface provides a wealth of functions and tools that can be used in many fields such as image recognition, speech recognition, and natural language processing. This article will provide a comprehensive analysis of Baidu AI interface for Golang developers and give specific code examples.

1. Image Recognition

Baidu AI interface provides powerful image recognition functions, which can realize various functions such as image classification, image labeling, and image search. The following is a sample code that uses Golang to call the Baidu image recognition interface:

package main

import (
    "fmt"
    "github.com/astaxie/beego/httplib"
    "encoding/base64"
    )

func main() {
    APIKey := "your_api_key"
    SecretKey := "your_secret_key"
    imageFile := "test.jpg"
    
    // 将图片转为base64编码
    base64Image := ImageToBase64(imageFile)
    
    // 调用百度图像识别接口
    res, err := httplib.Post("https://aip.baidubce.com/rest/2.0/image-classify/v2/advanced_general",
        ).Header("Content-Type", "application/x-www-form-urlencoded").
        Param("access_token", GetAccessToken(APIKey, SecretKey)).
        Param("image", base64Image).
        Param("top_num", "3").
        Bytes()
        
    if err != nil {
        fmt.Println(err)
        return
    }
    
    fmt.Println(string(res))
    
}

// 获取access token
func GetAccessToken(APIKey, SecretKey string) string {
    res, err := httplib.Get("https://aip.baidubce.com/oauth/2.0/token").Param("grant_type", "client_credentials").
        Param("client_id", APIKey).
        Param("client_secret", SecretKey).Bytes()
    
    if err != nil {
        fmt.Println(err)
        return ""
    }
    
    // 解析返回的json数据获取access token
    var result map[string]interface{}
    err = json.Unmarshal(res, &result)
    if err != nil {
        fmt.Println(err)
        return ""
    }
    
    accessToken := result["access_token"].(string)
    return accessToken
}

// 将图片转为base64编码
func ImageToBase64(imageFile string) string {
    file, err := os.Open(imageFile)
    if err != nil {
        fmt.Println(err)
        return ""
    }
    
    defer file.Close()
    
    fileInfo, _ := file.Stat()
    size := fileInfo.Size()
    imageData := make([]byte, size)
    
    file.Read(imageData)
    
    return base64.StdEncoding.EncodeToString(imageData)
}
Copy after login

The above sample code demonstrates how to use Golang to call the Baidu image recognition interface to implement the image classification function. It should be noted that you need to replace your_api_key and your_secret_key in the code with your own API Key and Secret Key, and replace test.jpg with yours own image file.

2. Speech recognition

Baidu AI interface provides powerful speech recognition functions, which can realize speech to text, speech synthesis and other functions. The following is a sample code that uses Golang to call the Baidu speech recognition interface:

package main

import (
    "fmt"
    "github.com/astaxie/beego/httplib"
    "io/ioutil"
    "encoding/base64"
    )

func main() {
    APIKey := "your_api_key"
    SecretKey := "your_secret_key"
    audioFile := "test.wav"
    
    // 将音频转为base64编码
    base64Audio := AudioToBase64(audioFile)
    
    // 调用百度语音识别接口
    res, err := httplib.Post("https://aip.baidubce.com/rest/2.0/speech/asr/v1/digital",
        ).Header("Content-Type", "application/x-www-form-urlencoded").
        Param("access_token", GetAccessToken(APIKey, SecretKey)).
        Param("speech", base64Audio).
        Bytes()
        
    if err != nil {
        fmt.Println(err)
        return
    }
    
    fmt.Println(string(res))
    
}

// 获取access token
func GetAccessToken(APIKey, SecretKey string) string {
    res, err := httplib.Get("https://aip.baidubce.com/oauth/2.0/token").Param("grant_type", "client_credentials").
        Param("client_id", APIKey).
        Param("client_secret", SecretKey).Bytes()
    
    if err != nil {
        fmt.Println(err)
        return ""
    }
    
    // 解析返回的json数据获取access token
    var result map[string]interface{}
    err = json.Unmarshal(res, &result)
    if err != nil {
        fmt.Println(err)
        return ""
    }
    
    accessToken := result["access_token"].(string)
    return accessToken
}

// 将音频转为base64编码
func AudioToBase64(audioFile string) string {
    data, err := ioutil.ReadFile(audioFile)
    if err != nil {
        fmt.Println(err)
        return ""
    }
    
    return base64.StdEncoding.EncodeToString(data)
}
Copy after login

The above sample code demonstrates how to use Golang to call the Baidu speech recognition interface to implement the speech-to-text function. It should be noted that you need to replace your_api_key and your_secret_key in the code with your own API Key and Secret Key, and replace test.wav with yours own audio files.

3. Natural Language Processing

Baidu AI interface also provides rich natural language processing functions, including text classification, sentiment analysis, lexical analysis and other functions. The following is a sample code that uses Golang to call Baidu's natural language processing interface to implement text classification:

package main

import (
    "fmt"
    "github.com/astaxie/beego/httplib"
    "encoding/json"
    )

func main() {
    APIKey := "your_api_key"
    SecretKey := "your_secret_key"
    text := "这是一段测试文本"
    
    // 调用百度自然语言处理接口
    res, err := httplib.Post("https://aip.baidubce.com/rpc/2.0/nlp/v1/topic").
        Header("Content-Type", "application/json").
        Param("access_token", GetAccessToken(APIKey, SecretKey)).
        Body(`{ "text": "` + text + `"}`).
        Bytes()
        
    if err != nil {
        fmt.Println(err)
        return
    }
    
    fmt.Println(string(res))
    
}

// 获取access token
func GetAccessToken(APIKey, SecretKey string) string {
    res, err := httplib.Get("https://aip.baidubce.com/oauth/2.0/token").Param("grant_type", "client_credentials").
        Param("client_id", APIKey).
        Param("client_secret", SecretKey).Bytes()
    
    if err != nil {
        fmt.Println(err)
        return ""
    }
    
    // 解析返回的json数据获取access token
    var result map[string]interface{}
    err = json.Unmarshal(res, &result)
    if err != nil {
        fmt.Println(err)
        return ""
    }
    
    accessToken := result["access_token"].(string)
    return accessToken
}
Copy after login

The above example code demonstrates how to use Golang to call Baidu's natural language processing interface to implement text classification. It should be noted that you need to replace your_api_key and your_secret_key in the code with your own API Key and Secret Key, and replace This is a test text For your own text.

Summary:

This article comprehensively analyzes the Baidu AI interface and gives specific Golang code examples, hoping to help the majority of Golang developers. Of course, this is just the tip of the iceberg. Baidu AI interface has more powerful functions waiting for developers to explore and use. If you are interested in artificial intelligence, you might as well try using Baidu AI interface. I believe you will have new discoveries and experiences. I wish everyone can achieve better results and results in using Baidu AI interface!

The above is the detailed content of Comprehensive analysis of Baidu AI interface: A tool guide for Golang developers. For more information, please follow other related articles on the PHP Chinese website!

source:php.cn
Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
Popular Tutorials
More>
Latest Downloads
More>
Web Effects
Website Source Code
Website Materials
Front End Template